US ERA ARCHIVE DOCUMENT

REPORT ON RAILWAY-INDUCED GROUND VIBRATIONS FLY ASH DISPOSAL FACILITY AND BOTTOM ASH DISPOSAL FACILITY PHILIP SPORN POWER PLANT NEW HAVEN, WEST VIRGINIA NPDES NO. WV0001058

Prepared For:
American Electric Power Service Corporation
1 Riverside Plaza
Columbus, Ohio 43215

Prepared By:
Geo/Environmental Associates, Inc.
3502 Overlook Circle
Knoxville, Tennessee 37909

GA File No. 09-387 May 27, 2010

REPORT ON RAILWAY-INDUCED
GROUND VIBRATIONS
FLY ASH DISPOSAL FACILITY AND
BOTTOM ASH DISPOSAL FACILITY
PHILIP SPORN POWER PLANT
NEW HAVEN, WEST VIRGINIA
NPDES NO. WV0001058

Prepared For:

American Electric Power Service Corporation 1 Riverside Plaza Columbus, Ohio 43215

Prepared By:

Geo/Environmental Associates, Inc. 3502 Overlook Circle Knoxville, Tennessee 37909

> GA File No. 09-387 May 27, 2010

TABLE OF CONTENTS

BACKGROUND & SITE DESCRIPTION1
General1
Fly Ash Disposal Facility2
Bottom Ash Disposal Facility3
CSX Transportation Railway Network Line
RESPONSES TO USEPA REQUEST FOR INFORMATION – ITEMS 2a TO 2s4
APPENDICES
USEPA LETTER DATED NOVEMBER 13, 2009 REQUESTING
ADDITIONAL INFORMATIONAPPENDIX I
VIBRATION MONITORING, GEOPHYSICAL DATA AND LABORATORY
TESTING CONDUCTED BY DR. MICHAEL KALINSKI
FIELD AND LABORATORY TEST DATAAPPENDIX III
LEM SLOPE STABILITY ANALYSESAPPENDIX IV
FESM SLOPE STABILITY AND LIQUEFACTION ANALYSESAPPENDIX V
DRAWINGSAPPENDIX VI
REFERENCES

Geo/Environmental Associates, Inc.

3502 Overlook Circle • Knoxville, TN 37909 • 865-584-0344 • Fax 865-584-0778 • www.geoe.com

May 27, 2010

American Electric Power 1 Riverside Plaza Columbus, Ohio 43215-2373

Attn.: Mr. Pedro J. Amaya, P.E.

RE: Report on Railway-Induced Ground Vibrations for

Fly Ash Disposal Facility and Bottom Ash Disposal Facility

Philip Sporn Power Plant

New Haven, Mason County, West Virginia

NPDES No. WV0001058

GA File No. 09-387

Dear Mr. Amaya:

At the request of American Electric Power (AEP), Geo/Environmental Associates, Inc. (GA) has prepared a report summarizing the impact of railway-induced ground vibrations on the dikes for the Fly Ash Disposal Facility and the Bottom Ash Disposal Facility at the Philip Sporn Power Plant. Specifically, this report is in response to the United States Environmental Protection Agency's (USEPA) request for information, Items 2a through 2s, issued in a letter dated November 13, 2009. Provided herein is the response addressing each of the USEPA's information requests for Items 2a through 2s. A copy of the November 13, 2009 letter in which the USEPA requests information is provided in Appendix I. Additionally, railway information and vibration data, laboratory and field testing data, slope stability analyses, liquefaction analyses, drawings, and references are provided in Appendices II through VII.

BACKGROUND

General

The Sporn Fly Ash and Bottom Ash Disposal Facilities are maintained and operated by American Electric Power to support disposal of ash generated at the Philip Sporn Power Plant. The site is located near the town of New Haven in Mason County, West Virginia. The Fly Ash Disposal Facility (i.e., Section H-H crest on the Western Dike) is located at approximate coordinates North 38° 58' 18", West 81° 55' 59". The Fly Ash Disposal Facility is bounded by the Mountaineer Power Plant on its north side; the Ohio River on its east side; the Bottom Ash

RWC [Sporn Vibration Assessment_Response 2a-2s_5-27-10_FINAL EPA]

Disposal Facility and coal yard on its south side; and the CSX Rail Line and West Virginia State Route 62 on its west side. The Bottom Ash Disposal Facility (i.e., Section A-A crest on the Western Dike) is located at approximate coordinates N 38° 58' 05", W 81° 55' 45". The Bottom Ash Disposal Facility is bounded by the Clearwater Pond and Fly Ash Disposal Facility on its north side; the coal yard and the Ohio River on its east side; Philip Sporn Power Plant on its south side; and the CSX Rail Line and West Virginia State Route 62 on its west side.

Fly Ash Disposal Facility

The Sporn Plant Fly Ash Disposal Facility generally consists of an above ground fly ash pond contained by four dikes (i.e., the Northern, Eastern, Southern, and Western dikes). Original construction of the dikes was conducted in 1959. Dike raisings and/or extensions were conducted at the Fly Ash Disposal Facility in 1965, 1968, and in 1972. The Southern, Western, and Northern Dikes are founded primarily on residual clay and silt materials. The original construction for the Eastern Dike is founded primarily on residual clay and silt materials. However, the upper portion of the Eastern Dike is constructed/founded primarily on fly ash that was hydraulically placed in the pond prior to 1972. Between 1996 and 2002, AEP implemented modifications to the Eastern Dike to address seepage observed on the exterior face of the dike and to improve the overall stability conditions of the slopes. In general, for the improvements, the company installed drainage collection provisions and regraded/buttressed the exterior slopes. A detailed historical review and design related to the 1996 through 2002 modifications to the Fly Ash Disposal Facility were provided in the AEP report *Philip Sporn Electric Generation Plant*, Unit 5 Fly Ash Facility, prepared in 1996. As indicated by the as-built topography shown on the Site Map drawing in Appendix VI: (1) the Northern Dike has an as-built crest ranging in elevation from about 612 feet, NGVD to about 620 feet, NGVD; (2) the Eastern Dike has an asbuilt crest of about 620 feet, NGVD; (3) the Southern Dike has an as-built crest ranging in elevation from about 612 feet, NGVD to about 620 feet, NGVD; and (4) the Western Dike has an as-built crest ranging in elevation from about 610 feet, NGVD to about 612 feet, NGVD.

Fly ash generated at the Philip Sporn Power Plant – Unit 5 is sluiced to and temporarily disposed in the Fly Ash Disposal Facility; where after, it is excavated and hauled for dry disposal into AEP's Little Broad Run Landfill. AEP maintains an operating pool level of approximately 605 feet, NGVD in the fly ash pond. A plan view drawing (i.e., Site Map) of the Fly Ash Disposal Facility is provided in Appendix VI.

Bottom Ash Disposal Facility

The Bottom Ash Disposal Facility was built in 1948 to provide disposal capacity for bottom ash generated at the Philip Sporn Power Plant. In general, the Bottom Ash Disposal Facility consists of three dikes (i.e., the Northern, Eastern, and Western Dikes) which impound the bottom ash pond and the clearwater pond. The 1948 dikes were constructed on silty sand and/or silty clay original ground. Since the initial 1948 construction, the Bottom Ash Disposal Facility dikes have been raised/extended several times to achieve the as-built configuration shown on the plan view drawing provided in Appendix VI. Modifications to improve the overall stability of the Bottom Ash Disposal Facility dike slopes were implemented between 1996 and 2002. A detailed historical review and designs related to the 1996 through 2002 modifications are provided in the report Philip Sporn Electric Generation Plant, Bottom Ash Facility, prepared by AEP in 1996. As indicated by the as-built mapping shown on the plan view drawing in Appendix VI: (1) the Northern Dike (i.e., between the bottom ash pond and the clearwater pond) has an as-built crest ranging in elevation from about 593 feet, NGVD to about 598 feet, NGVD; (2) the Eastern Dike has an as-built crest ranging in elevation from about 594 feet, NGVD to about 598 feet, NGVD; (3) the Western Dike has an as-built crest elevation of about 594 feet, NGVD. The Bottom Ash Disposal Facility's bottom ash pond is generally maintained at or below an operating pool level of 583 feet, NGVD.

CSX Transportation Railway Network Line

A railway line is located adjacent to the exterior (i.e. downstream) toes of the Fly Ash Disposal Facility and the Bottom Ash Disposal Facility Western Dikes. The adjacent railway is a CSX Transportation (CSX) rail network line that extends from Huntington, West Virginia to Parkersburg, West Virginia. Railway traffic for this line ranges from light high-rail vehicles to trains transporting tanker cars, industrial cargo cars, and coal cars. Based on discussions with personnel at CSX Huntington Division Headquarters, 2 to 4 trains generally travel the rail line between Huntington and Parkersburg each day. This information is consistent with the amount of rail traffic that was observed by GA while conducting onsite field studies and based on general observations made by AEP site personnel. However, as described in a November 9, 2009 letter issued by CSX (provided in Appendix II), train schedules and frequencies are not available to the general public. The main railway line superstructure consists of a typical railway roadbed composed of ballast and a single standard railway track running adjacent to the toe of the western dikes. Siding splits occur just south of the Bottom Ash Disposal Facility and near the northwest corner of the Fly Ash Disposal Facility. The siding at the northwest corner of the Fly Ash Disposal Facility extends adjacent to the exterior toe along a portion of the Fly Ash

Disposal Facility Northern Dike. A maximum speed limit (i.e., a slow order) of 25 miles per hour is in effect for the railway lines adjacent to the ash disposal facilities. The locations of the railway and the associated sidings are shown on the plan view drawing provided in Appendix VI.

In order to provide additional information for the USEPA pursuant to their November 13, 2009 letter, AEP has requested that GA evaluate the impact of railway vibrations on the Fly Ash Disposal and Bottom Ash Disposal Facilities. Correspondingly, we have conducted detailed field testing and engineering analyses on three critical sections. Specifically, we have evaluated the impact of railway vibrations on the Fly Ash Disposal Facility Eastern Dike Section K-K, the Fly Ash Disposal Facility Western Dike Section H-H, and the Bottom Ash Disposal Facility Western Dike Section A-A. Provided herein are itemized responses to each of the USEPA's requests regarding the railway vibration assessment.

RESPONSES TO USEPA REQUEST FOR INFORMATION – ITEMS 2a TO 2s

Provided herein are USEPA Information Request Items 2a through 2s and corresponding responses prepared by GA. For completeness, the November 13, 2009 letter containing the information requests is provided in Appendix I. Background information, data, and analyses supporting the responses provided herein are included in Appendices II through VII.

Information Request Item 2a

Provide a description of the site including a site map depicting the location of the railway superstructure, embankments and other planimetric and topographic features.

Response to Item 2a

A site description is provided in the preceding Background & Site Description section of this document. A site map depicting the location of the railway superstructure, embankments, and other planimetric and topographic features is provided in Appendix VI.

Information Request Item 2b

Provide description, procedures and summary of field measurements of railway induced ground vibrations generated by loaded railway traffic under dynamic conditions at various speeds and stopping conditions.

Response to Item 2b

Railway vibration monitoring was conducted at the site on November 11, 2009, January 6, 2010, and January 7, 2010. The vibration monitoring was performed by Michael E. Kalinski, Ph.D. (Dr. Kalinski), from the University of Kentucky in Lexington, Kentucky. In general, the vibration monitoring was conducted using seismographs installed at the following six locations:

- Downstream (exterior) toe of Bottom Ash Disposal Facility Western Dike Section A-A (Location A).
- Crest of Bottom Ash Disposal Facility Western Dike Section A-A (Location B).
- Downstream (exterior) toe of Fly Ash Disposal Facility Western Dike Section H-H (Location C).
- Crest of Fly Ash Disposal Facility Western Dike Section H-H (Location D).
- Crest of Fly Ash Disposal Facility Eastern Dike Section K-K (Location E).
- Downstream (exterior) bench of Fly Ash Disposal Facility Eastern Dike Section K-K (Location F).

Vibration monitoring Locations A through F are shown on the site map and section drawings provided in Appendix VI. A detailed discussion of the monitoring procedures, a summary of field measurements, and digital data is provided in Appendix II. As shown in the vibration monitoring data, peak particle velocities and accelerations related to railway traffic were measured at Locations A and B on the Western Dike of the Bottom Ash Disposal Facility and at Locations C and D on the Western Dike of the Fly Ash Disposal Facility. No vibrations due to railway traffic were detected at Location E or at Location F on the Eastern Dike of the Fly Ash Disposal Facility. Therefore, the critical sections assessed herein are the Bottom Ash Disposal Facility Western Dike Section A-A and the Fly Ash Disposal Facility Western Dike Section H-H. No additional analyses are provided herein for the Eastern Dike of the Fly Ash Disposal Facility because railway induced vibrations are non-detectable for this dike.

Information Request Item 2c

Provide description, procedures and summary of field exploration and laboratory tests of in-situ subsurface conditions, including, but not limited to:

- i. soil test & instrumentation location map;
- ii. cross-sectional geometry of embankment sections depicting phreatic surface; and
- iii. soil test boring logs and laboratory analyses of soil testing.

Response to Item 2c

GA coordinated/conducted subsurface exploration, instrumentation installation, field testing, and laboratory testing for the Bottom Ash Disposal Facility and the Fly Ash Disposal Facility to use in the vibration assessment. Specifically, GA coordinated subsurface exploration and instrumentation installation performed by Horn and Associates, Inc. (Horn) from December 10, 2009 through December 18, 2009. GA coordinated field geophysical testing (i.e., on January 6 and 7, 2010) and laboratory testing conducted by Dr. Kalinski. GA conducted on-site laboratory testing concurrent with the drilling operations, as well as laboratory testing at our office in Knoxville, Tennessee. Additionally, in our vibration assessment, we applied subsurface exploration data and laboratory testing data that was previously developed by AEP. A summary of the subsurface exploration, instrumentation, field testing, and laboratory testing as related to the vibration analyses is provided herein. Field and laboratory data developed by Dr. Kalinski is provided in Appendix II. Field data from the subsurface exploration conducted by Horn and laboratory data developed by GA is provided in Appendix III.

Subsurface Exploration

As coordinated by GA, Horn drilled nine boreholes at the site. Boreholes GA-1A, GA-1B, GA-1C, and GA-1D were drilled at the crest of the Fly Ash Disposal Facility in the general vicinity of Eastern Dike Section K-K. Boreholes GA-2 and GA-3 were drilled in the Fly Ash Disposal Facility Eastern Dike. Boreholes GA-4A, GA-4B, and GA-4C were drilled at the crest of the Bottom Ash Disposal Facility in the Western Dike, near Section A-A. Borehole locations are shown on the site map and section drawings provided in Appendix VI.

In general the boreholes were sampled in accordance with ASTM D1586 (Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils) at varying sampling intervals. In addition, undisturbed soil samples were obtained in accordance with ASTM D6519 (Standard Practice for Sampling of Soil Using the Hydraulically Operated Stationary Piston Sampler). Upon retrieval, selected samples were immediately subjected to on-site laboratory testing. Thereafter, all samples were prepared and transported to GA's laboratory in Knoxville, Tennessee for further testing.

Detailed logs were developed for each of the boreholes and are provided in Appendix III. Additionally, graphical borehole logs are provided in Appendix III.

<u>Instrumentation</u>

At the completion of boreholes GA-1A, GA-1B, GA-1C, GA-4A, GA-4B, and GA-4C; Horn installed 70 mm Durham Geo Slope Indicator (DGSI) inclinometer casing in each hole in order to implement crosshole seismic testing. The DGSI inclinometer casing was installed and grouted full length (i.e., in accordance with ASTM D4428 - Standard Test Methods for Crosshole Seismic Testing) in order to accommodate the crosshole seismic testing. Thereafter, GA conducted a downhole inclinometer survey to evaluate the orientation and deviation in the boreholes. The results of the downhole inclinometer survey are provided in Appendix III. Additionally, Horn installed a 1-inch diameter standpipe piezometer in borehole GA-1D. In order to measure the potential piezometric level at any location in the fly ash deposit in which it was installed, standpipe piezometer GA-1D consisted of a pre-packed sand screen that extended through the length of the fly ash. Initial piezometric level readings for the standpipe piezometer are provided on the borehole logs provided in Appendix III.

Field Testing

In addition to the vibration monitoring, GA coordinated geophysical field testing conducted by Dr. Kalinski at the site on January 6 and 7, 2010. Specifically, Dr. Kalinski conducted crosshole seismic testing (i.e., in general accordance with ASTM D4428 - Standard Test Methods for Crosshole Seismic Testing) at boreholes GA-1A, GA-1B, and GA-1C through the Eastern Dike of the Fly Ash Disposal Facility and at boreholes GA-4A, GA-4B, and GA-4C through the Western Dike of the Bottom Ash Disposal Facility. The crosshole seismic testing was done to develop shear wave velocity and Poisson's ratio data for the embankment cross-sections. Results of the geophysical field testing conducted by Dr. Kalinski are provided in Appendix II.

Laboratory Testing

Laboratory testing was conducted on field samples obtained during the subsurface exploration phase of the program. Specifically, split-spoon and undisturbed piston samples obtained during the drilling operations were subjected to testing both at an on-site laboratory and at GA's Knoxville, Tennessee laboratory. In general, the laboratory testing consisted of:

- 1. in-place moisture and density determination of undisturbed fly ash piston samples;
- 2. specific gravity determination of undisturbed fly ash piston samples;
- 3. void ratio determination of undisturbed fly ash piston samples;
- 4. grain-size analyses on fly ash, bottom ash, and foundation soils;
- 5. Atterberg limit determination on fly ash and foundation soils;

- 6. Permeability testing on fly ash and foundation soils; and
- 7. Consolidated undrained triaxial strength testing with pore pressure measurements on fly ash and foundation soils.

Laboratory testing summary sheets and data developed by GA are provided in Appendix III. Additional laboratory testing data used in the vibration assessment included:

- 1. Damping ratio measurements conducted by Dr. Kalinski at the University of Kentucky. Specifically, Dr. Kalinski conducted free-free resonant column testing to measure the damping ratio for site fly ash and foundation soils. Measured damping ratios are presented in Dr. Kalinski's March 8, 2010 report provided in Appendix II.
- 2. Cyclic triaxial testing data developed by Ohio State University using reconstituted fly ash bulk samples obtained from the site. For the testing, the fly ash materials were reconstituted to an initial minimum density of 62 pounds per cubic feet, as measured for the in-place density during on-site laboratory testing of undisturbed fly ash piston tube samples. The Cyclic Stress Ratio (CSR) graph developed during the cyclic triaxial strength testing of the fly ash material is provided in Appendix III.
- 3. Pertinent laboratory data provided by AEP from historical sampling and laboratory testing performed on site materials. For reference, copies of the pertinent AEP laboratory data, as used in the vibration analyses, is provided in Appendix III.

Information Request Item 2d

Provide description, procedures and summary of slope stability analysis including but not limited to:

- i. soil strength parameters modeled and basis of values used;
- ii. loading conditions modeled from measured railway-induced ground vibrations generated by railway traffic;
- iii. factors of safety against shallow slope failures and global instability.

Response to Item 2d

General

The computer programs *SLOPE/W* and *QUAKE/W* were used to analyze the slope stability along Section A-A of the Bottom Ash Disposal Facility Western Dike and along Section H-H of the Fly Ash Disposal Facility Western Dike. *SLOPE/W* and *QUAKE/W* are developed by GEO-SLOPE International, Ltd. of Calgary, Alberta, Canada. Specifically, the Morgenstern-Price

limit equilibrium method (LEM) and the *QUAKE/W* finite element stress method (FESM) were used to evaluate the shallow-seated and deep-seated (global) stability of each critical slope in both an upstream and downstream direction. Phreatic levels used in these analyses were provided by AEP, and are based on *SEEP/W* finite element analyses and field measured piezometric levels developed for slope stability reports prepared by the company in 2009.

The LEM slope stability analyses were conducted using pseudo-static loading conditions for the maximum railway induced ground accelerations measured at the vibration monitoring locations. We conservatively applied the accelerations from the dike exterior toe vibration monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction LEM slope stability analyses and we applied the accelerations from the dike crest monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction LEM slope stability analyses. A summary of the accelerations used in the LEM pseudo-static analyses is provided in Table 1.

TABLE 1 SUMMARY OF ACCELERATIONS USED IN LIMIT EQUILIBRIUM METHOD PSEUDO-STATIC SLOPE STABILITY ANALYSES			
Critical Section	Vibration Monitoring Location	Maximum Acc	eleration (g's)
		Horizontal	Vertical
Bottom Ash Disposal Facility Section A-A	Location A (Exterior Toe - Adjacent to Track) Downstream Direction Analyses	0.033	0.008
	Location B (Crest) Upstream Direction Analyses	0.013	0.002
Fly Ash Disposal Facility	Location C (Exterior Toe - Adjacent to Track) Downstream Direction Analyses	0.046	0.008
Section H-H	Location D (Crest) Upstream Direction Analyses	0.010	0.003

The FESM slope stability analyses were conducted by applying the time-acceleration history data generated during the railway induced vibration events (i.e., as measured by Dr. Kalinski, provided in Appendix II) to the initial stress conditions generated using the *QUAKE/W* finite element computer program. GA conducted the FESM slope stability analyses using the maximum vibration data from each monitoring location. We conservatively applied the maximum vibration data from the dike exterior toe vibration monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction FESM slope stability analyses and we applied the maximum vibration data from the dike crest vibration monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction FESM slope stability analyses. A summary of the railway induced vibration data as applied in the FESM slope stability analyses is provided in Table 2.

TABLE 2 SUMMARY OF RAILWAY INDUCED VIBRATION DATA USED IN FINITE ELEMENT STRESS METHOD SLOPE STABILITY ANALYSES				
Critical Section	Vibration Monitoring Location	Maximum Railway Induced Vibration Data Used		
	Location A	November 11, 2009		
	(Exterior Toe - Adjacent to Track)	12:12 pm Train		
Bottom Ash Disposal Facility	Downstream Direction Analyses	10 sec. to 20 sec.		
Section A-A	Location B	November 11, 2009		
	(Crest)	12:12 pm Train		
	Upstream Direction Analyses	16 sec. to 26 sec.		
	Location C	November 11, 2009		
	(Exterior Toe - Adjacent to Track)	12:12 pm Train		
Fly Ash Disposal Facility	Downstream Direction Analyses	36 sec. to 46 sec.		
Section H-H	Location D	November 11, 2009		
	(Crest)	12:12 pm Train		
	Upstream Direction Analyses	0 sec. to 5.5 sec.		

Material Parameters

Material parameters used in the LEM and FESM slope stability analyses are based on site specific data or from using accepted reference materials in relation to the site specific soils/conditions. The strength properties used in the LEM slope stability analyses are based on the parameters AEP developed for Section A-A of the Bottom Ash Disposal Facility and Section H-H of the Fly Ash Disposal Facility, as provided in their 1998 and 2009 stability assessment

reports. A detailed summary of the material parameters used in the LEM analyses and the respective data sources are provided in Tables IV-2 and IV-3, in Appendix IV. In general, the dynamic properties used in the FESM analyses were selected based on laboratory testing of site specific soil materials and/or field testing. A detailed summary of the material parameters used in the FESM analyses and the respective data sources are provided in Tables V-2 and V-3, in Appendix V.

Summary of Safety Factors and Stability Factors

SLOPE/W was used to calculate LEM slope stability analyses safety factors and FESM slope stability analyses stability factors. As described in *Stability Modeling with SLOPE/W*©2007, the LEM safety factor is defined as "the factor by which the shear strength of the soil must be reduced in order to bring the mass of the soil into a state of limiting equilibrium along a selected slip surface." Whereas, the FESM stability factor is defined as "the ratio of the summation of the available resisting shear force S_r along a slip surface to the summation of the mobilized shear force S_m along a slip surface." Slope stability safety factors and stability factors were generated for both the Bottom Ash Disposal Facility Section A-A and the Fly Ash Disposal Facility Section H-H. A summary of the stability analysis results for each of the evaluated conditions is provided in Table 3. *SLOPE/W* data and graphical plots generated for the LEM slope stability analyses are provided in Appendix IV. *SLOPE/W* data and graphical plots generated for the FESM slope stability analyses are provided in Appendix V.

As shown in Table 3, LEM safety factors and FESM stability factors were calculated for shallow-seated and deep-seated slip surface conditions. The LEM safety factors equal or exceed 1.70 for the Bottom Ash Disposal Facility Section A-A and 1.40 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface conditions. Moreover, the LEM safety factors equal or exceed 2.02 for the Bottom Ash Disposal Facility Section A-A and 1.65 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. The FESM stability factors equal or exceed 2.68 for the Bottom Ash Disposal Facility Section A-A and 1.78 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface conditions. The FESM safety factors equal or exceed 2.72 for the Bottom Ash Disposal Facility Section A-A and 2.12 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. Based on the results obtained in our stability assessment, we believe that the railway vibrations will not have a significant/consequential impact on the slope stability of the dikes for the Bottom Ash and Fly Ash Disposal Facilities.

TABLE 3 SUMMARY OF LEM SAFETY FACTORS AND FESM STABILITY FACTORS					
Critical Section	Analysis Method	Pseudo-static or Rail Induced Vibration Loading Condition Slope and Slip Surface Condition		Safety Factor or Stability Factor	
	LEM	Location A (Exterior Toe)	Downstream (Shallow)	2.96	
		$(a_h = 0.033g, a_v = 0.008g)$	Downstream (Deep)	3.08	
Bottom Ash		Location B (Crest)	Upstream (Shallow)	1.70	
Disposal Facility		$(a_h = 0.013g, a_v = 0.002g)$	Upstream (Deep)	2.02	
Section A-A	FESM	Location A (Exterior Toe)	Downstream (Shallow)	4.06	
Section A-A		(11-11-09 12:12 pm Train)	Downstream (Deep)	4.25	
	LOM	Location B (Crest)	Upstream (Shallow)	2.68	
		(11-11-09 12:12 pm Train)	Upstream (Deep)	2.72	
	1	Location C (Exterior Toe)	Downstream (Shallow)	1.84	
		$(a_h = 0.046g, a_v = 0.008g)$	Downstream (Deep)	2.15	
Fly Ash		Location D (Crest)	Upstream (Shallow)	1.40	
Disposal Facility		$(a_h = 0.010g, a_v = 0.003g)$	Upstream (Deep)	1.65	
Section H-H	. y	Location C (Exterior Toe)	Downstream (Shallow)	2.66	
330000111-11	FESM	(11-11-09 12:12 pm Train)	Downstream (Deep)	2.75	
•	PESIVI	Location D (Crest)	Upstream (Shallow)	1.78	
		(11-11-09 12:12 pm Train)	Upstream (Deep)	2.12	

Information Request Item 2e

Evaluate the potential liquefaction of fly ash under the raised eastern dike of the Fly Ash Pond from instantaneous, as well as long term exposure, to railway induced ground vibrations from the west side of the Fly Ash Pond.

Response to Item 2e

Vibration monitoring conducted at the crest and at the downstream bench of the Fly Ash Disposal Facility Eastern Dike (i.e., along Section K-K) yielded non-detectable vibration levels due to rail traffic during three monitoring events (i.e., on November 11, 2009; January 6, 2010; and January 7, 2010). As such, we conclude that the Eastern Dike of the Fly Ash Disposal Facility is not subjected to instantaneous exposure, nor will it be subjected to long-term exposure to railway induced vibrations. Correspondingly, we believe that liquefaction of the fly ash material under the raised Eastern Dike of the Fly Ash Disposal Facility, due to railway induced ground vibration, is improbable.

Information Request Item 2f

Evaluate the potential liquefaction of fly ash under the raised eastern dike of the Fly Ash Pond from train collision and derailment on the west side of the Fly Ash Pond.

Response to Item 2f

We understand that the USEPA has released AEP from the responsibility of addressing Item 2f of the information request. As such, GA has removed this item from the scope of our assessment.

Information Request Item 2g

Determine the root cause of apparent shallow sloughing of the dike slopes.

Response to Item 2g

GA has evaluated the shallow sloughing conditions that were observed on the exterior face of the Fly Ash Disposal Area Western Dike. Using *SLOPE/W*, we have modeled the shallow sloughing conditions along Section H-H. We have modeled four conditions to evaluate the possible root cause of the shallow sloughing. The evaluated conditions are as follows:

- 1. Section H-H with a *moist* topsoil material on the exterior dike facing exhibiting an assumed effective friction angle, ϕ ' of 27°.
- 2. Section H-H with a *saturated* topsoil material on the exterior dike facing exhibiting an assumed effective friction angle, ϕ ° of 27°.
- 3. Section H-H with a *moist* topsoil material on the exterior dike facing exhibiting an effective friction angle, ϕ ' of 27° and pseudo-static train loadings of $a_h = 0.046g$ and $a_v = 0.008g$.
- 4. Section H-H with a *saturated* topsoil material on the exterior dike facing exhibiting an effective friction angle, ϕ ' of 27° and pseudo-static train loadings of $a_h = 0.046g$ and $a_v = 0.008g$.

The results of the shallow sloughing assessment are summarized in Table 4. *SLOPE/W* data and graphical plots generated during our assessment are provided in Appendix IV. As shown in the results, for moist topsoil conditions and no railway induced vibration loadings (i.e., Condition 1), a safety factor in excess of 1.2 is calculated. However, for saturated topsoil conditions with no train loadings (Condition 2), a safety factor less than 1.0 is obtained. For moist topsoil conditions and applied train loadings (Condition 3), a safety factor of about 1.1 is calculated.

For saturated topsoil conditions with train loadings (i.e., Condition 4), a safety factor less than 1.0 is calculated. It should be noted that the slip surface calculated for each of these conditions is relatively thin (i.e., less than about 1-foot in thickness) and would not have a significant impact on the stability/integrity of the existing dike. Based on our assessment (i.e., as shown in the results for Conditions 2 and 4), it appears that the primary cause of the shallow sloughing observed at the site is likely due to saturated conditions of the topsoil material. These saturated conditions are possibly caused by infiltration of surface runoff and/or shallow interflow within the topsoil that may occur during precipitation and/or snow melt events.

	TABLE 4 SUMMARY OF SHALLOW SLOUGHING STABILITY ANALYSES				
	Condition	Safety Factor			
1.	Section H-H with moist topsoil material.	1.23			
2.	Section H-H with saturated topsoil material.	0.54			
3.	Section H-H with <i>moist</i> topsoil material and train loadings.	1.08			
4.	Section H-H with <i>saturated</i> topsoil material and train loadings.	0.47			

Information Request Item 2h

Evaluate the plans for the sloughing repairs in consideration of the determination of the root cause and description of potential changes, if any, that may need to be made to the plans to ensure long-term success of the repair.

Response to Item 2h

GA has evaluated the plans for the sloughing repairs using proposed repair drawings provided by AEP (provided in Appendix IV). Based on our review of the drawing, we believe that the rock fill repair zone and filter fabric will provide adequate drainage capacity to reduce the potential for saturating the exterior face materials on the dike. The SLOPE/W slope stability safety factor for the repaired Section H-H, with maximum railway induced loadings from Location C, is about 1.6. Based on our assessment, it is our opinion that the proposed repairs will significantly reduce the potential for shallow sloughing along the Fly Ash Disposal Facility Western Dike.

Information Request Item 2i

Provide conclusions regarding railway vibrations and their effect on slope stability and liquefaction potential at the Philip Sporn Fly Ash Pond dikes and on slope stability at the Bottom Ash Pond dike.

Response to Item 2i

GA used *SLOPE/W* to calculate slope stability safety factors and stability factors for Section A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike (See Table 3 and Appendices IV and V, herein, for results). The safety factors were calculated by applying LEM pseudo-static loading conditions. The stability factors were calculated by applying FESM dynamic loading conditions. Both the LEM pseudo-static analyses and the FESM dynamic analyses were evaluated by conservatively applying vibration/acceleration data from the dike exterior toe vibration monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction slope stability analyses and by applying the vibration/acceleration data from the dike crest vibration monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction slope stability analyses.

As presented previously in Table 3, LEM safety factors and FESM stability factors were calculated for shallow-seated and deep-seated slip surface conditions. The LEM safety factors equal or exceed 1.70 for the Bottom Ash Disposal Facility Section A-A and 1.40 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface conditions. Moreover, the LEM safety factors equal or exceed 2.02 for the Bottom Ash Disposal Facility Section A-A and 1.65 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. The FESM stability factors equal or exceed 2.68 for the Bottom Ash Disposal Facility Section A-A and 1.78 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface conditions. The FESM safety factors equal or exceed 2.72 for the Bottom Ash Disposal Facility Section A-A and 2.12 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. The slope stability analyses indicate that adequate safety factors/stability factors are available for each of the conservatively modeled dike/train loading conditions. Based on the results obtained in our stability assessment, we believe that the railway vibrations will not have a significant/consequential impact on the slope stability of the dikes for the Bottom Ash and Fly Ash Disposal Facilities.

GA used QUAKE/W to evaluate liquefaction potential at Section A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike. Site specific material parameters and railway induced loadings were applied in the QUAKE/W finite element analyses, as described in Appendix V. Given the material parameters and railway induced loadings, QUAKE/W dynamic analyses were conducted to delineate potential liquefaction zones. As shown in the liquefaction analysis results provided in Appendix V, no liquefaction zones are predicted for Section A-A of the Bottom Ash Disposal Facility Western Dike or for Section H-H of the Fly Ash Disposal Facility Western Dike. Furthermore, vibration monitoring conducted at the crest and at the downstream bench of the Fly Ash Disposal Facility Eastern Dike (i.e., along Section K-K) yielded non-detectable vibration levels due to rail traffic during three monitoring events (i.e., on November 11, 2009; January 6, 2010; and January 7, 2010). As such, we conclude that the Eastern Dike of the Fly Ash Disposal Facility is not subjected to instantaneous exposure, nor will it be subjected to long-term exposure to railway induced vibrations. Correspondingly, we believe that liquefaction of the fly ash material under the raised Eastern Dike of the Fly Ash Disposal Facility, due to railway induced ground vibration, is improbable.

Information Request Item 2j

Provide conclusions regarding train wreck and its effect on liquefaction potential at the raised eastern dike of the Philip Sporn Fly Ash Pond.

Response to Item 2j

We understand that the USEPA has released AEP from the responsibility of addressing Item 2j of the information request. As such, GA has removed this item from the scope of our assessment.

Information Request Item 2k

Provide recommendations for remedial action to enhance slope stability to acceptable safety margins and/or eliminate or minimize liquefaction potential, as may be required, depending on the results of the assessment.

Response to Item 2k

GA calculated adequate slope stability safety factors (i.e., in excess of 1.5) for Section A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike. Furthermore, given the measured railway induced loadings, no

liquefaction zones were predicted in the dynamic analyses. Therefore, no remedial actions (i.e., other than routine maintenance and the ongoing repairs to reduce shallow sloughing) are currently recommended.

Information Request Item 21

Provide a list of references.

Response to Item 21

A list of references is provided in Appendix VII.

<u>Information Request Item 2m</u>

Provide tables as needed to facilitate presentation of data.

Response to Item 2m

Pertinent tables have been provided in the body of this document and as needed in the appendices to facilitate presentation of the data.

Information Request Item 2n

Provide figures as needed for illustration purposes.

Response to Item 2n

Applicable figures are provided in the appendices to the document.

Information Request Item 20

Provide an appendix containing summary descriptions of field and laboratory test procedures that may be used to develop vibration data and additional soil and ash data as needed for the assessment.

Response to Item 20

Summary descriptions related to the field geophysical studies and the vibration monitoring are provided in Appendix II. Laboratory testing procedures were conducted in accordance with ASTM standards. Laboratory testing data is provided in Appendix III. Listings of applicable ASTM standards used in the sampling and testing of site soil and ash materials are listed in the references provided in Appendix VII.

Information Request Item 2p

Provide an appendix containing the vibration monitoring data and all test boring logs and other field data considered in the study, including existing and additional data that may be obtained.

Response to Item 2p

Field geophysical data and the vibration monitoring data are provided in Appendix II. Test borings and other field data related to the study are included in Appendix III.

<u>Information Request Item 2q</u>

Provide an appendix containing all laboratory data considered in the assessment, including existing data and additional data developed for the assessment.

Response to Item 2q

Laboratory data considered in the assessment is provided in Appendix III.

Information Request Item 2r

Provide an appendix containing all calculations, including slope stability analyses and liquefaction analyses.

Response to Item 2r

SLOPE/W slope stability analyses are provided in Appendix IV. *QUAKE/W* dynamic/liquefaction analyses are provided in Appendix V.

Information Request for Item 2s

Provide certification of the assessment and report by a professional engineer registered in the state of West Virginia.

Response to Item 2s

A certification of the assessment and report presented herein is provided at the front of this document.

Geo/Environmental Associates, Inc. appreciates this opportunity to be of continuing service to American Electric Power. If you have questions regarding this response letter, feel free to contact me at (865) 584-0344 or email me at rogerc@geoe.com.

Respectfully Submitted,

Geo/Environmental Associates, Inc.

oger Weal, For:

Seth W. Frank, E.I. Project Coordinator

Roger W. Cecil, P.E.

Senior Geotechnical Engineer

Toger W Ce cil

West Virginia Registered P.E. No. 14,367

APPENDIX I

USEPA LETTER DATED NOVEMBER 13, 2009 REQUESTING ADDITIONAL INFORMATION

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF ENFORCEMENT AND COMPLIANCE ASSURANCE

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Alan R. Wood, PE
Manager
Water & Ecological Resource Services Section
Environmental Services Division
American Electric Power
1 Riverside Plaza
Columbus, OH 43215-2373

NOV 13 2000

Re: Request for Information Pursuant to Section 308 of the Clean Water Act (33 U.S.C. § 1318)

Dear Mr. Wood:

Enclosed is an Information Request issued pursuant to Section 308(a) of the Clean Water Act, 33 U.S.C. § 1318(a). Section 308 of the Clean Water Act authorizes the Administrator of the United States Environmental Protection Agency ("EPA") to require those subject to the Act to furnish information, conduct monitoring, provide entry to the Administrator or authorized representatives, and make reports as may be necessary to carry out the objectives of the Act This authority has been re-delegated to the undersigned Director of the Water Enforcement Division in the Office of Enforcement and Compliance Assurance. The enclosures, which are hereby made part of this letter, provide details of the information the American Electric Power ("AEP") Philip Sporn Generating Plant ("Facility") must provide to EPA and contain instructions on how this information is to be submitted to EPA.

Section 308(a) of the Clean Water Act, 33 U.S.C. § 1318(a) authorizes EPA to require any person to provide information required to carry out the objectives of the Clean Water Act. Accordingly, you are requested to respond to the enclosed Information Request (Enclosure 1). Please read the instructions in the enclosure carefully before preparing your response. Answer each request as clearly and completely as possible. To the extent that AEP has any of the requested data currently on file, that data may be submitted in the requested format as part of your response. Your response to this request must be accompanied by a certificate that is signed and dated by you or the person who is authorized by you to respond to the request. The certification must state that the response is complete and contains all information and documentation available to you pursuant to the request. A Statement of Certification is enclosed with this letter (Enclosure 2).

Please submit your written responses in accordance with the deadlines set forth in the request to:

Ginny Phillips
U.S. Environmental Protection Agency
Water Enforcement Division
1200 Pennsylvania Avenue, NW
Mail Code 2243A; Room 4118A
Washington, DC 20460
(For deliveries by courier use the Zip Code 20004)

You are entitled to assert a business confidentiality claim pursuant to the regulations set forth in 40 C.F.R. Part 2, Subpart B. If EPA determines the information you have designated meets the criteria in 40 C.F.R. § 2.208, the information will be disclosed only to the extent and by means of the procedures specified in Subpart B. Unless a confidentiality claim is asserted at the time the requested information is submitted, EPA may make the information available to the public without further notice to you.

Compliance with the provisions of this Information Request is mandatory. If you do not respond fully and truthfully to this Information Request or adequately justify your failure to do so, you may be subject to civil penalties or criminal fines under Section 309 of the Clean Water Act, 33 U.S.C. § 1319.

We appreciate your cooperation and prompt attention to this matter. Please contact Ginny Phillips of my staff at 202-564-6139 (phillips ginny@epa.gov) within 72 hours of receipt this Information Request to inform us of your intention to comply with this request. If you or your staff would like an opportunity to confer, have any questions, or would like to schedule a meeting relating to this Information Request, please contact Ginny Phillips. Thank you for your cooperation in this matter.

Sincerely,

Mark Pollins Director
Water Enforcement Division

Enclosures

cc: Michael Zeto, West Virginia Department of Environmental Protection Brian Long, West Virginia Department of Environmental Protection Rick Rogers, EPA Region 3

INFORMATION REQUEST

I. STATUTORY AUTHORITY

1. This information is requested pursuant to Section 308 of the Clean Water Act, 33 U.S.C. § 1318.

II. INSTRUCTIONS

- 1. Respond to Each Request Completely. Provide a separate report for each of the three reports requested. Within each report, indicate the subpart of the request being addressed.
- 2. <u>Provide the Best Information Available.</u> If any request or subpart of the request cannot be responded to in full, respond to the extent possible along with an explanation of why the request cannot be responded to in full.
- 3. Source(s) of Response. Include with each report, the name, position, and title of each person(s) who participated in developing the report.
- 4 <u>Source(s) of Data.</u> Any existing field and laboratory data relied upon by you to develop the reports required by this Information Request must be identified in the report and include an explanation of how the data are representative of the conditions at the site.
- 5. <u>Indicate Objections to Requests.</u> While you may indicate that you object to certain requests contained in this Information Request, you must provide responsive information notwithstanding those objections. To object without providing responsive information may subject you to the penalties discussed in the cover letter.
- 6. Claims of Privilege. If you claim that an entire document submitted in response to this Information Request is privileged communication, identify the document and provide the basis for the privilege. If you claim that any particular section of a document is privileged communication, identify that section and provide the basis for the privilege. Regardless of the assertion of a privilege, you must respond to the Information Request in full.
- 7. New Information. If you become aware of any information not previously known or not available to you as of the date of submission of your response to this Information Request, you must supplement your response to EPA within five (5) business days. Moreover, should you find, at any time after the submission of your response, that any portion of the submitted information is false or misrepresents the truth, you must notify EPA of this fact immediately and provide a corrected response within two (2) business days.

8. <u>Submission of Response by U.S. Mail.</u> Submit a paper copy and an electronic pdf file on CD of your response to:

Ginny Phillips
U.S. Environmental Protection Agency
Water Enforcement Division
1200 Pennsylvania Avenue, NW
Mail Code 2243A; Rm. 4118A
Washington, DC 20460
202-564-6139
(For deliveries by courier use the Zip Code 20004)

- 9. <u>Submission of Response by E-mail.</u> Submit an electronic .pdf file of your response to phillips.ginny@epa.gov.
- 10. Retention of Records. All records and documents that were created and/or relied upon in responding to any part of this request must be maintained until EPA informs you that maintenance is no longer required.
- 11. <u>Inclusion of Statement of Certification</u>. The Statement of Certification found in Enclosure 2 must be submitted along with each submission made pursuant to this Information Request. This statement must be signed by you or a person authorized by you to respond to the Information Request.

III. <u>DEFINITIONS</u>

Unless otherwise defined herein, terms used in this request shall have the meaning given to those terms in the Act, 33 U.S.C. § 1251 et seq., the regulations promulgated thereunder at 40 CFR § 122, and in AEP's NPDES Permit, No. WV0001058.

- 1. The terms "and" and "or" shall be construed either disjunctively or conjunctively as necessary to bring within the scope of this Information Request any information which might otherwise be construed to be outside its scope.
- 2. The term "any," as in "any documents," for example, shall mean "any and all"
- 3. The term "describe" means to detail, depict, or give an account of the requested information, or to report the content of any oral and/or written correspondence, communication, or conversation, or to report the contents of any document, including the title, the author, the position or title of the author, the addressee, the position or title of the addressee, indicated or blind copies, date, subject matter, number of pages, attachment or appendices, and all persons to whom the document was distributed, shown, or explained.
- 4. "State" shall mean the State of West Virginia.

- 5. "Person" means an individual, trust, firm, joint stock company, corporation (including a government corporation), partnership, association, State, municipality, commission, political subdivision of a State, or an interstate body.
- 6. "Facility" is defined as:

AEP Philip Sporn, State Route 62, New Haven, WV 25265

7. "Permit" is defined as AEP Philip Sporn, National Pollutant Discharge Elimination System Permit Number WV0001058. Expiration Date: June 30, 2013.

IV. SUPPLEMENTAL REPORTS TO BE SUBMITTED

AEP shall develop supplemental reports for the requests below to ensure that the coal combustion waste impoundments at the Facility are structurally sound and will continue in safe and reliable operation. AEP shall develop and submit a supplemental report for the following requests in accordance with this section:

- 1. Site-specific study of the potential for liquefaction of foundation ash under design earthquake loading conditions for the raised eastern dike at the Fly Ash Pond;
- 2 Site-specific assessment of the effect of railway-induced ground vibrations on the embankments at both the Fly Ash Pond and the Bottom Ash Pond; and
- 3. Analysis of slope stability under design earthquake loading conditions for the upper sections of the eastern dike of the Fly Ash Pond.
- 1. Report on Earthquake-Induced Liquefaction for Eastern Dike of Fly Ash Pond: Within ninety (90) days of receipt of this request, AEP shall perform a study and submit an engineering report to EPA addressing the potential for earthquake-induced liquefaction of sluiced ash deposits upon which the raised eastern dike of the Fly Ash Pond was constructed at the Facility. The study shall be based on the specific site characteristics, subsurface conditions, material properties and parameters existing at the raised Fly Ash Pond dike, as determined by field exploration and laboratory tests. Existing field and laboratory data may be used to the extent that the data are representative of the conditions at the ash pond dike. Additional test borings and laboratory tests shall be performed if needed to adequately and accurately characterize the subsurface profiles and evaluate the densities, strengths, moisture contents, classification and index properties of the soil and ash layers that comprise the subsurface profiles. The Experimental Investigation approach used in The Ohio State University Research Project # 60005876 teported in "Draft Final Report of Evaluation of Liquefaction Potential of Impounded Fly Ash;" dated October 17, 2005 and adapted from The Indian Institute of Technology (Madras, India) "Liquefaction Analysis of Pond Ash" contained in the Broceedings of the 15th International Conference on Solid Waste Technology & Management held on December 12-15, 1999 in Philadelphia, Pennsylvania, may be used in this study to evaluate the liquefaction potential of foundation ash supporting the raised dike of the Fly Ash

Pond at the Pacifity However, the cyclic triaxial testing shall be on representative samples of Philip Sporn fly ash remolded to relative densities that bracket the in-situ relative densities of the fly ash. Alternatively, semi-empirical procedures may be used to evaluate liquefaction potential of the foundation ash, such as those presented in the paper "Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes," by I. M. Idriss and R.W. Boulanger, Proceedings of The Joint11th International Conference on Soil Dynamics & Earthquake Engineering (ICSDEE) & 3rd International Conference on Earthquake Geotechnical Engineering (ICEGE) (pp. 32-56), January 7-9, 2004. The design earthquake ground acceleration shall be at least 0 06g. At a minimum, the report shall include the following:

- (a) description of background information and approach of the study;
- (b) description of the methodology and procedures used in the analysis;
- (c) description of any additional field testing performed and the results obtained;
- (d) description of any additional laboratory testing performed and the results obtained;
- (e) description of the site(s) including site map(s) depicting planimetric and topographic features and the location of critical section(s) selected for analysis;
- (f) description of the subsurface conditions at the critical sections and illustration of the analysis profiles;
- (g) discussion of the design soil and ash properties and parameters and the basis of selection of these values or the source of the values;
- (h) presentation of analysis results, including appropriate charts and graphs illustrating the results, and discussion of the results;
- (i) conclusions regarding liquefaction potential under design earthquake loading conditions at the Philip Sporn Fly Ash Pond dike;
- recommendations for remedial action to eliminate or minimize liquefaction potential should the foundation ash be found susceptible to liquefaction under design earthquake loading;
- (k) list of references;
- (I) tables as needed to facilitate presentation of data;
- (m) figures as needed for illustration purposes;
- (n) an appendix containing summary descriptions of field and laboratory test procedures that may be used to develop additional soil and ash data as needed for the study;
- an appendix containing all test boring logs and other field data considered in the study, including existing data and additional data that may be obtained to fully characterize the analysis profiles;
- (p) an appendix containing all laboratory test data considered in the study, including existing data and additional data developed for the study;
- an appendix containing calculations, including analysis calculations, e.g., program SHAKE runs, and calculations for calculated values used in the analysis, e.g., calculation of shear modulus values (G_{max}); and

- (r) certification of the study and report by a professional engineer registered in the state of West Virginia.
- 2 Report on Railway-Induced Ground Vibration for Fly Ash Pond Dike and Bottom Ash Pond Dike: Within ninety (90) days of receipt of this request, AEP shall perform assessment and submit a report to EPA addressing the effect of railway induced ground vibrations on the slope stability at the Fly Ash Pond dike and the Bottom Ash Pond dike located at the Facility. In addition, the study shall evaluate the potential for liquefaction of foundation ash under the raised eastern dike of the Fly Ash Pond due to railway-induced ground vibrations. The study shall be based on the specific site characteristics, railway loading conditions, subsurface conditions, material properties and parameters existing at the Fly Ash Pond dike and at the Bottom Ash Pond dike, as determined by field measurement, field exploration and laboratory tests. Existing field and laboratory data may be used to the extent that the data are representative of the conditions at the ash pond dikes. The study shall also examine the cause of apparently shallow sloughing of the dike slopes and determine whether the root cause of the sloughing is railway-induced ground vibration or some other cause, such as saturation of the thick topsoil layer on the relatively steep slopes and consequential loss of its nominal cohesive strength, leading to failure due to insufficient frictional shearing resistance, or a combination of causes. In light of the results of this examination, the study shall review plans for repairs of the sloughing and determine whether modifications to the plans ought to be made to ensure long-term success of the repair. At a minimum, the report shall include the following:
 - (a) a description of the site including a site map depicting the location of the railway superstructure, embankments and other planimetric and topographic features;
 - (b) description, procedures and summary of field measurements of railway-induced ground vibrations generated by loaded railway traffic under dynamic conditions at various speeds and stopping conditions;
 - (c) description, procedures and summary of field exploration and laboratory tests of in-situ subsurface conditions, including, but not limited to:
 - (i) soil test & instrumentation location map;
 - (ii) cross-sectional geometry of embankment sections depicting phreatic surface; and
 - (iii) soil test boring logs and laboratory analyses of soil testing.
 - (d) description, procedures and summary of slope stability analysis including, but not limited to:
 - (i) soil strength parameters modeled and basis of values used;
 - (ii) loading conditions modeled from measured railway-induced ground vibrations generated by railway traffic;
 - (iii) factors of safety against shallow slope failures and global slope instability evaluation of the potential liquefaction of fly ash under the raised eastern dike of the Fly Ash Pond from instantaneous, as well as long term exposure, to railway induced ground vibrations from the west side of the Fly Ash Pond;

- (f) evaluation of the potential liquefaction of fly ash under the raised eastern dike of the Fly Ash Pond from train collision and derailment on the west side of the Fly Ash Pond;
- (g) determination of the root cause of apparently shallow sloughing of the dike slopes;
- (h) evaluation of the plans for sloughing repairs in consideration of the determination of the root cause and description of potential changes, if any, that may need to be made to the plans to ensure long-term success of the repair;
- (i) conclusions regarding railway vibrations and their effect on slope stability and liquefaction potential at the Philip Sporn Fly Ash Pond dikes and on slope stability at the Bottom Ash Pond dike;
- (j) conclusions regarding train wreck and its effect on liquefaction potential at the raised eastern dike of the Philip Sporn Fly Ash Pond;
- (k) recommendations for remedial action to enhance slope stability to acceptable safety margins and/or eliminate or minimize liquefaction potential, as may be required, depending on the results of the assessment;
- (1) list of references;
- (m) tables as needed to facilitate presentation of data;
- (n) figures as needed for illustration purposes;
- (o) an appendix containing summary descriptions of field and laboratory test procedures that may be used to develop vibration data and additional soil and ash data as needed for the assessment;
- (p) an appendix containing the vibration monitoring data and all test boring logs and other field data considered in the study, including existing data and additional data that may be obtained;
- (q) an appendix containing all laboratory test data considered in the assessment, including existing data and additional data developed for the assessment;
- (r) an appendix containing all calculations, including slope stability analyses and liquefaction analyses; and
- (s) certification of the assessment and report by a professional engineer registered in the state of West Virginia.
- 3. Report on Analysis of Seismic Slope Stability of Fly Ash Pond Eastern Dike Upper Section: Within ninety (90) days of receipt of this request, AEP shall submit a report to EPA of the "Seismic Slope Stability Analysis" to characterize the seismic stability of the Upper Section of the Fly Ash Pond eastern dike, which was constructed over sluiced fly ash deposits, at the Facility. The analysis shall be based on the specific site characteristics, subsurface conditions, material properties and parameters existing at the raised Fly Ash Pond dike, as determined by field exploration and laboratory tests. The analysis shall be based on a design earthquake ground acceleration of at least 0.06g. Pseudo-static design methodologies may be used. Existing field and laboratory data may be used to the extent that the data are representative of the conditions at the ash pond dike. A report of the analysis shall be prepared and at a minimum the report shall include:

- (a) a description of the geotechnical properties used for each soil and ash layer used in the analysis including total and effective shear strength parameters;
- (b) a description of the data collection and modeling methodologies utilized by AEP in the evaluation of seismic slope stability;
- (c) an analysis of embankment internal stresses, including static pore pressures under expected seepage conditions;
- (d) an analysis of embankment internal stresses, including static pore pressures during normal and maximum waste placement conditions;
- (e) analyses of embankment stability shall consider both slope and base sliding conditions;
- (f) analyses of slope stability shall include evaluation of critical full height and partial height potential failure planes;
- (g) computed minimum safety factors during the design earthquake event for both slope and base sliding conditions;
- (h) conclusions regarding seismic slope stability under design earthquake loading conditions of upper section of the Fly Ash Pond eastern dike at the Facility;
- (i) recommendations for remedial action to enhance seismic stability of the upper section of the Fly Ash Pond eastern dike to acceptable safety margins, as may be required, depending on the results of the assessment;
- (j) list of references;
- (k) tables as needed to facilitate presentation of data;
- (1) figures as needed for illustration purposes;
- (m) an appendix containing summary descriptions of field and laboratory test procedures that may be used to develop additional soil and ash data as needed for the analysis:
- (n) an appendix containing all test boring logs and other field data considered in the analysis, including existing data and additional data that may be obtained;
- (o) an appendix containing all laboratory test data considered in the analysis, including existing data and additional data developed for the analysis;
- (p) an appendix containing all stability analysis calculations; and
- (q) certification of the analysis by a professional engineer registered in the state of West Virginia.

STATEMENT OF CERTIFICATION

I certify that the information contained in or accompanying this submission is true, accurate, and complete.

As to the identified portion(s) of this submission for which I cannot personally verify its truth and accuracy, I certify as the company official having supervisory responsibility for the person(s) who, acting under my direct instructions, made the verification, that this information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment.

•	$\mathbf{B}\mathbf{y}$			
	(Signature)		
	(Title)			
	·			
	(Date)			·

APPENDIX II

VIBRATION MONITORING, GEOPHYSICAL DATA AND LABORATORY TESTING CONDUCTED BY DR. MICHAEL KALINSKI

DR. KALINSKI REPORT DATED NOVEMBER 30, 2009 RELATED TO NOVEMVER 11, 2009 VIBRATION MONITORING

Mr. Roger Cecil. P.E. Geo/Environmental Associates 3502 Overlook Circle Knoxville, TN 37909

RE: Vibration monitoring at the AEP Sporn Power Plant, New Haven, West Virginia

Dear Roger,

Vibration monitoring was performed on November 11, 2009 at six points at the AEP Sporn Power Plant in New Haven, West Virginia. Vibration monitoring was performed from approximately 8:05 A.M. until 4:25 P.M. by myself, along with the assistance of Mr. Seth Frank. This letter report describes the methods used and results obtained, and is accompanied by a CD containing the vibration data in ASCII format.

Vibration monitoring was performed at six locations on the perimeter levees that contain the fly ash and bottom ash at the power plant. The locations are described as follows:

- Location A: outside toe of the bottom ash levee adjacent to the train tracks;
- Location B: outside crest of the bottom ash levee adjacent to the train tracks;
- Location C: outside toe of the fly ash levee adjacent to the train tracks;
- Location D: outside crest of the fly ash levee adjacent to the train tracks;
- Location E: outside crest of the fly ash levee adjacent to the Ohio River; and
- Location F: outside toe of the fly ash levee adjacent to the Ohio River.

Mr. Frank used GPS while on site to obtain accurate coordinate information for each location.

Vibration monitoring was performed using six Blastmate III seismographs, which are manufactured by Instantel. The Blastmate III seismographs record four channels simultaneously during each event; one air wave channel with a microphone, and three ground wave channels using three geophones. The three geophones are oriented orthogonal to each other so that one geophone detects vertical particle motion, and the other two detect horizontal particle motion in two perpendicular directions. The two horizontal geophones are identified as longitudinal and transverse, with the longitudinal geophone oriented towards the vibration source, and the transverse oriented perpendicular to the longitudinal.

The geophones that accompany the Blastmate III have a damped resonant frequency of approximately 2.0 Hz and the data are sampled in the instrument at a rate of 1,024 samples per second. This allows vibrations to be recorded between the bandwidth of 2.0-250 Hz with minimal distortion. The vibrations imparted to the geophones are converted into voltage, and the voltage is converted to particle velocity using a calibration factor. To minimize wind and surface noise, the geophones are buried in sand a few inches below the ground surface and covered with

a heavy weight such as a sand bag or water jug. The serial numbers of the seismographs used at each test location are as follows:

- Location A: Serial #BA11348;
- Location B: Serial #BA11347:
- Location C: Serial #BA10619;
- Location D: Serial #BA13539;
- Location E: Serial #BA13553; and
- Location F: Serial #BA11042.

Calibration certificates for each seismograph and its accompanying geophones are included in Appendix A of this report.

Vibration monitoring was performed on Nov. 11, 2009 from approximately 8:05 A.M. until 4:25 P.M. as indicated on the monitoring logs included in Appendix B of this report. During this period, three trains passed by the power plant at times of approximately 9:48 A.M., 12:12 P.M., and 1:36 P.M. The 9:48 and 1:36 trains were short trains. The 9:48 train consisted of an engine only, and the 1:36 train consisted of an engine and two empty lumber cars. The 12:12 train was a long train that consisted of two engines along with an estimated 95 cars (based on assumed train speed of 30 mph, vibration record length of 130 s, and average car length of 60 ft). The cars consisted of tank cars and coal cars.

The vibration monitoring logs included in Appendix B indicate when the seismographs were actively monitoring and when vibration events were recorded, including the three trains. The monitoring logs indicate that additional events were also recorded. These additional events correspond to occasional testing of the seismographs by stomping on the ground next to the geophones. Details regarding these additional test events are not included herein.

Vibrations from the 9:48 train were relatively small, and were only detected at Location C. For all logging, vibrations were only recorded when the vibration level exceeded 0.02 in./s. Below this level, vibrations were considered to be within the level of ambient noise. Summary reports for this and all other recorded vibration events are included in Appendix C of this report, and are also included in the attached CD (Appendix D). For each seismograph and vibration event, two reports are included: a time-domain Event Report and a frequency-domain FFT Report. Peak particle velocities (PPVs) can be found on the Event Reports. For the 9:48 event recorded at Location C, PPVs recorded by the transverse, vertical, and longitudinal geophones were 0.01, 0.02, and 0.02 in./s, respectively.

Vibrations from the 1:36 were also relatively small, and were only detected at Locations A and C. The Event Reports and FFT Reports for these two vibrations are also included in Appendix C. Peak Particle Velocities for this train at the two locations are summarized in the table below.

Peak particle velocities recorded at Locations A and C from the 1:36 train

Location	Tran. PPV (in./s)	Vert. PPV (in./s)	Long. PPV (in./s)
A (#BA11348)	0.02	0.02	0.02
C (#BA10619)	0.02	0.02	0.03

Vibrations from the 12:12 train were larger and longer in duration than the other two trains, and were detected at locations A, B, C, and D. The accompanying Event Reports and FFT Reports are also included in Appendix C. The overall duration of vibrations from the train was approximately 130 s. However, vibration levels at Locations B, C, and D fell below the 0.02-in./s threshold while the train passed, so the vibration records at these locations are either less than 130 s in duration, or separated into 2 or more recordings. Peak Particle Velocities for this train at the four locations are summarized in the table below.

Peak particle velocities recorded at Locations A, B, C, and D from the 12:12 train

Location	Tran. PPV (in./s)	Vert. PPV (in./s)	Long. PPV (in./s)
A (#BA11348)	0.03	0.06	0.05
B (#BA11347)	0.01	0.04	0.03
C (#BA10619)	0.05	0.06	0.07
D (#BA13539)	0.01	0.01	0.02

All of the vibration monitoring data are included in ASCII format on the attached CD. Given a sample rate of 1,024 samples/s, the vibration data should be plotted at a sample rate of 9.7656 x 10⁻⁴ s. Vibration data are presented in the ASCII files in units of particle velocity in mm/s. All Event Reports and FFT Reports are also included on the CD, along with photos taken during testing. Please note that the internal clocks on the six seismographs were only set to the nearest minute, so the time stamps on the monitoring logs and event records may be slightly out of synch between seismographs.

Thank you very much for providing me the opportunity to work with you on this project. Please do not hesitate to contact me if you have any questions or require any additional information.

Regards,

Michael E. Kalinski, Ph.D.

Attachments: Appendix A – calibration certificates for seismographs and geophones

Appendix B – vibration monitoring logs

Appendix C -- event reports

Appendix C – vibration data in ASCII format (on CD)

APPENDIX A

Calibration certificates for seismographs and geophones

AEPSPP003245

Calibration Certificate

Part Number: 714A9701

Description: TRIAXIAL GEOPHONE (ISEE)

Serial Number: BG10482

Calibration Date: December 18, 2008

Calibration Equipment: 714J7401

Instantel certifies that the above product was calibrated in accordance with the applicable instantel procedures. These procedures are part of a quality system that is certified to the ISO9001:2000 quality standard, and are designed to assure that the product listed above meets or exceeds Instantel specifications.

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By: __Math

Martin Hogue

Instantel

Calibration Certificate

B

Part Number: 714A0801

Description: BLASTMATE III

Serial Number: BA11347

Calibration Date: December 18, 2008

Calibration Equipment: 718A1501

Instantel certifies that the above product was calibrated in accordance with the applicable Instantel procedures. These procedures are part of a quality system that is certified to the ISO9001:2000 quality standard, and are designed to assure that the product listed above meets or exceeds Instantel specifications.

Instantel further certifies that the measurement instruments used during the calibration of this product are traceable to the National Institute of Standards and Technology; or National Research Council of Canada. Evidence of traceability is on file at Instantel and is available upon request.

The environment in which this product was calibrated is maintained within the operating specifications of the instrument.

Please note that the sensor check function is intended to check that the sensors are connected to the unit, installed in the proper orientation and sufficiently level to operate properly. This function should not be confused with a formal calibration, which requires the sensors be checked against a reference that is traceable to a known standard. Instantel recommends that products be returned to Instantel or an authorized service and calibration facility for annual calibration.

Calibrated By: __/<u>\Wto</u>

Instantel

Amplitude Frequency Response of BG12432

Amplitude Frequency Response of BG12494

Amplitude Frequency Response of BG9432

APPENDIX B

Vibration monitoring logs

ball348_mlg	Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s Start Monitoring Trigger Vert: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s Event recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s
2009 (V 8.01 - 8.01) End Time	Nov 11 /09 08:13:55 Nov 11 /09 08:14:18 Nov 11 /09 08:14:37 Nov 11 /09 08:16:01 Nov 11 /09 08:16:01 Nov 11 /09 09:24:23 Nov 11 /09 10:02:15 Nov 11 /09 11:56:07 Nov 11 /09 13:36:44 Nov 11 /09 13:36:44
Printed: November 13, Start Time	NOV 11 /09 08:13:55 NOV 11 /09 08:13:55 NOV 11 /09 08:13:55 NOV 11 /09 08:13:55 NOV 11 /09 08:14:13 NOV 11 /09 08:14:13 NOV 11 /09 08:14:32 NOV 11 /09 08:15:43 NOV 11 /09 08:15:55 NOV 11 /09 09:25:10 NOV 11 /09 09:25:10 NOV 11 /09 10:02:52 NOV 11 /09 11:56:30 NOV 11 /09 11:56:30 NOV 11 /09 12:13:10 NOV 11 /09 12:13:10 NOV 11 /09 13:36:33

ball347mlg Event Report: Monitor Log	Status	Start Monitoring Trigger Level: Geo: 0.0500 in/s Event recorded. Trigger Vert: 0.0500 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0500 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s Start Monitoring Trigger Vert: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Event recorded. Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s	
2009 (V 8.01 - 8.01)	End Time	Nov 10 /09 23:59:24 Nov 10 /09 23:59:53 Nov 11 /09 08:06:39 Nov 11 /09 09:23:29 Nov 11 /09 09:48:09 Nov 11 /09 12:13:54 Nov 11 /09 12:14:45 Nov 11 /09 12:15:22 Nov 11 /09 12:15:22	
Printed: November 13, 2	Start Time	Nov 10 09 23:59:14 Nov 10 09 23:59:14 Nov 11 09 23:59:18 Nov 11 09 08:06:28 Nov 11 09 08:06:34 Nov 11 09 08:06:34 Nov 11 09 08:17:41 Nov 11 09 12:13:54 Nov 11 09 12:13:54 Nov 11 09 12:13:54 Nov 11 09 12:13:54 Nov 11 09 12:13:54	

(_)
	/	2
	<u> -</u>	11
	>	しつし

bal0619_mlg Event Report: Monitor Log Status	SERIAL NUMBER: BA10619	Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s	No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s	Start Monitoring Trigger Level: Geo: 0.0200 in/s Fvent recorded Trigger Long: 0.0200 in/s	No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s	No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s	no events feconded. (Reyboard Exit) ifigger Geo: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s	Event recorded. Trigger Vert: 0.0200 in/s	Event recorded. Trigger Tran: 0.0200 in/s No events recorded. (Kevhoard Exit) Trigger Geo: 0.0200 in/s	Start Monitoring Trigger Level: Geo: 0.0200 in/s	No events recorded. (Kevhoard Exit) Trinner Geo. 0 0200 in/s	No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s
Printed: November 13, 2009 (V 8.01 - 8.01) Start Time End Time		11 /09	11 /09 08:43:	11 /09 09:18:51 11 /09 09:48:29 Nov 11 /09	11 /09 09:48:35 NOV 11 /09	11 /09 09:57:	11 /09 11:51:14	11 /09 12:12:59 Nov 11 /09	11 /09 12:14:	11 /09 12:27:00 11 /09 13:36:22 Nov. 11 /09	11 /09 13:36:	11 /09 13:40:31 Nov 11 /09

(>
,	LOCATION

ba13539	Event Report: Monitor Log
	(0.8.01 - 8.01)
0	13, 2009
	November 1
. 7	

(V 8.01 - 8.01) Event Report: Monitor Log	Status	SERIAL NUMBER: BA13539	Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Vert: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s Start Monitoring Trigger Level: Geo: 0.0200 in/s No events recorded. Trigger Long: 0.0200 in/s No events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s
2009 (v 8.01 - 8.01)	End ⊤ime		Nov 11 /09 08:33:38 Nov 11 /09 08:33:43 Nov 11 /09 09:15:56 Nov 11 /09 09:57:11 Nov 11 /09 12:12:30 Nov 11 /09 12:12:30 Nov 11 /09 12:12:30 Nov 11 /09 12:14:57
rinted: November 13, 2	Start Time		Nov 11 /09 08:33:28 Nov 11 /09 08:33:38 Nov 11 /09 08:33:38 Nov 11 /09 08:34:23 Nov 11 /09 09:16:27 Nov 11 /09 09:52:45 Nov 11 /09 09:57:49 Nov 11 /09 12:12:25 Nov 11 /09 12:12:30

1			S	200 in/s	200 in/s	200 in/s	200 in/s
شعلرا		153	/ni (0.0	0.0	0.0	0.0
30		BA135	.020c 00.in	Geo:	Geo:	Geo	Geo:
LOCATION E		SERIAL NUMBER: BA13553	Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Tran: 0.0200 in/s	Trigger	Trigger	Trigger	Trigger
ڵ	ns	RIAL	Level er Tr	Exit)	Exit)	Exit)	Exit)
70	Status	SEI	rrigger Trigg	eyboard_	Syboard	yboard	yboard
r Log			ing T rded.	ž	¥	Š	,¥
53_mlg : Monito			Monitor ent reco	ecorded.	ecorded.	ecorded.	ecorded.
ba135 Report		;	Start Ev	ents r	ents r	ents r	ents r
Event P		1		No eve	No eve	No eve	No eve
bal3553_mlg .01 - 8.01) Event Report: Monitor Log	Time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10:00:60 60/	09:00:40	09:01:36	10:06:08	16:04:25
8.01	End Ti		60/	60/	60/	60/	60/
9 8.	ū	i	11				
2009		i 	Nov	_			
Printed: November 13,	ime	! ! !	08:59:54 08:59:56	38:00:60	9:01:33	9:01:54	10:06:34
Nover	Start Time		60/				
ed: I	Sta	 	11	Ξ.		11	Ħ
Print			>0N	NOV	<u>\</u>	Nov	No No

سلسا
707
470

	Status	SERIAL NUMBER: BA11042	Start Monitoring Trigger Level: Geo: 0.0200 in/s Event recorded. Trigger Tran: 0.0200 in/s events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s events recorded. (Keyboard Exit) Trigger Geo: 0.0200 in/s
Printed: November 13, 2009 (V 8.01 - 8.01) Event Report: Monitor Log		† 	Start Monitoring Ti Event recorded. No events recorded. (Key No events recorded. (Key No events recorded. (Key
2009 (v 8.01 - 8.01)	End Time		Nov 11 /09 09:10:45 Nov 11 /09 09:10:52 Nov 11 /09 10:08:06 Nov 11 /09 16:08:52
Printed: November 13,	Start Time		Nov 11 /09 09:10:33 Nov 11 /09 09:10:40 Nov 11 /09 09:10:45 Nov 11 /09 09:11:13 Nov 11 /09 10:08:29

APPENDIX C

Event reports

Instantel*

FFT Report

Date/Time Tran at 12:13:10 November 11, 2009
Trigger Source Geo: 0.508 mm/s
Renge Record Time 133:75 sec (Auto-5Sec) at 1024 sps

Setial Number BA11348 V 8.12-8.0 BlestMate III B41491 Level 6.4 Volts December 18, 2008 by instantet Inc. Pile Name M348023R.9Y0

Extended Notes:

Notes Client: Project: Location: User:

Post Event Notes

Printed: Hoversher 20, 2006 (V 8,01 - 8,01)

Former Copyrighted 2004 Instantel No.

🎉 instantei*

FFT Report

Bertel Number BA11348 V 8.12-8.0 StastMate III Bettery Lavel 6.5 Vote December 18, 2008 by Instantel Inc. File Name M348CZ3V.4X0

Post Event Notes

Printed: November 20, 2000 (V 8,01 - 8,91)

Instantel

FFT Report

Rerial Number 8A11347 V 8.12-8.0 BlastMate III Battery Level 6.5 Vots Calibration December 18, 2008 by Instante Inc. M347C23R B00

Extended Notes:

Post Event Notes

Printed: Hovenher 26, 2005 (V 8.01 - 2.61)

Formus Copyrighted 2004 Instantel inc

Instantel*

FFT Report

Bettery Level 6.4 Volts
Calibration December 18, 2008 by Instantel Inc.
File Name M347CZ3R.BA0

Extended Notes:

Notes Client: Project: Location User:

Post Event Notes

Printed: Hovember 20, 2405 (V 8.01 - 2.01)

Formed Copyrighted 2004 Instantel Inc.

Instantel*

FFT Report

Seriel Number 8A11347 V 8.12-8.0 StastMate III
Buttery Level 6.4 Volts
Calibration December 18, 2008 by Instantel Inc.
His Name M347CZ3R.CN0

Notes Client; Project: Location User:

Post Event Notes

Printed: November 28, 2008 (V 8.01 - 8.91)

🎉 instantel'

FFT Report

Bertiel Number 8A11347 V 8.12-8.0 BlastMate III Battery Level 6.4 Volts Calibration December 18, 2008 by instantel inc. His Hame M347C23R.DS0

Extended Notes:

Post Event Notes

Printed: November 26, 2000 (V 8.01 - 8.01)

Instantel*

Date/Time Long at 09:48:29 November 11, 2009 Trigger Source Geo: 0.508 mm/s Date/Time

Range Geo :254 mm/s

Record Time 5.75 sec (Auto=5Sec) at 1024 sps

Notes Client: Project: Location:

Extended Notes:

Post Event Notes

Microphone Linear Weighting
PSPL 1.50 pa.(L) at 0.165 sec
ZC Freq 51 Hz Channel Test Passed (Freq = 20.1 Hz Amp = 614 mv)

	Tran	Vert	Long	
PPV	0.381	0.508	0.508	mm/s
ZC Freq	51	47	37	Hz
Time (Rel. to Trig)	0.682	0.006	0.000	sec
Peak Acceleration	0.0133	0.0265	0.0265	g
Peak Displacement	0.00130	0.00192	0.00291	mm
Sensorcheck	Passed	Passed	Passed	
Frequency	7.2	7.4	7.5	Hz
Overswing Ratio	4.2	3.5	4.0	

Peak Vector Sum 0.568 mm/s at 0.002 sec

Event Report

Serial Number BA10619 V 8.12-8.0 BlastMate III

Rattery Level 6.3 Volts
Calibration May 27, 2009 by Instantel Inc.
File Name L619CZ3K.KT0

1			M RI8507 And			
254	+		4al al :			1 1 1
		No v	elocity above 1.0	00 mm/s		
100-						
50				.*		
1						
20						
		. -				
10- -	and the second second					
5	•					
+						
İ				•		
2+						
1						
1	2	5	10	20	50	10
		_	Frequency (Hz)			

Printed: November 20, 2009 (V 8.01 - 8.01)

Trigger = ▶

Format Copyrighted 1996-2004 Instantel Inc.

FFT Report

Date/Time

Long at 09:48:29 November 11, 2009

Trigger Source Geo: 0.508 mm/s Geo :254 mm/s

Record Time

5.75 sec (Auto=5Sec) at 1024 sps

Serial Number BA10619 V 8.12-8.0 BlastMate III

Battery Level 6.3 Volts Calibration May 27, 2 May 27, 2009 by Instantel inc. File Name

L619CZ3K.KT0

Extended Notes:

Notes Client: Project: Location:

Post Event Notes

Printed: November 20, 2009 (V 8.01 - 8.01)

Format Copyrighted 1996-2004 Instantel Inc.

Event Report

Vert at 12:12:59 November 11, 2009

| Trigger Source | Geo: 0.508 mm/s | Range | Geo: 31.7 mm/s | Record Time | 77.25 sec (Auto=5Sec) at 1024 sps

Serial Number BA10619 V 8.12-8.0 BlastMate III Battery Level 6.3 Volts May 27, 2009 by Instantel Inc. L619CZ3R,9N0 Calibration File Name

Notes Client:

Project: Location: User:

Extended Notes:

Post Event Notes

Microphone PSPL ZC Freq

Linear Weighting 9.00 pa.(L) at 22.708 sec 39 Hz

Channel Test Passed (Freq = 20.1 Hz Amp = 534 mv)

	Tran	Vert	Long	
PPV	0.905	1.16	1.40	mm/s
ZC Freq	14	17	47	Hz
Time (Rei. to Trig)	45.714	25.931	36.707	sec
Peak Acceleration	0.0298	0.0298	0.0464	g
Peak Displacement	0.00846	0.0152	0.00843	mm
Sensorcheck	Passed	Passed	Passed	
Frequency	7.2	7.4	7.5	Hz
Overswing Ratio	4.1	3.5	4.0	

Peak Vector Sum 1.61 mm/s at 36.707 sec

Tran: + Vert: x Long: ø

Amplitude Scale: Geo: 0.500 mm/s/div Mic: 10.00 pa.(L)/div Trigger = ▶

Sensorcheck

Printed: November 20, 2009 (V 8.01 - 8.01)

Format Copyrighted 1996-2004 Instantel Inc.

Instantel*

FFT Report

| Date/Timte | Tran at 12.14:16 November 11, 2009 | Trigger Source | Geo: 0.506 mm/s | Geo: 31.7 mm/s | Geo: 31.7 mm/s | 59.75 sec (Auto+5Sec) at 1024 sps

Serial Number
Battery Level
Calibration
File Name

Bat0619 V 8.12-8.0 BlastMate fil
6.3 Volts
May 27, 2009 by Instartel inc.
L619CZ3R.850

Post Event Notes

Privited: November 20, 2002 (V 8.01 = 8.01)

Format Copyrighted 2004 (astante) inc

k instantei

FFT Report

Serial Number BA10519 V 8.12-8.0 BisetMate III Bettery Level 6.4 Volts May 27, 2009 by Instantel Inc. L619CZ3V.4M0

Notes Client: Project: Location User: Extended Notes:

Post Event Notes

Primed: November 20, 2002 [V 8,01 - 8,01]

Format Copyrighted 2004 Instantel Inc

■ Instantel*

 Date/Time
 Long at 12:12:25 November 11, 2009

 Trigger Source
 Geo: 0.500 mm/s

 Renge
 Geo: 31.7 mm/s

 Sec Sec (Auto=5Sec) at 1024 sps

9 Serial Number 8A13539 V 8.12-8.0 BlastNats III Battery Lavel 8.4 Voks Calibration February 11, 2009 by Instantel inc. FSSSC23R.8P0

Notes Client: Project: Location User:

Extended Notes:

Post Event Notes

Printed: November 26, 2005 (V 8.01 - 8.81)

Format Copyrighted 2004 Instantel Inc.

FFT Report

DR. KALINSKI REPORT DATED MARCH 8, 2010 RELATED TO JANUARY 6 AND 7, 2010 VIBRATION MONITORING, GEOPHYSICAL TESTING, AND LABORATORY DAMPING RATIO TESTING

Mr. Roger Cecil. P.E. Geo/Environmental Associates 3502 Overlook Circle Knoxville, TN 37909

RE: Vibration monitoring crosshole seismic testing, and resonant column testing at the AEP Sporn Power Plant, New Haven, West Virginia (revised report)

Dear Roger,

OVERVIEW

Vibration monitoring and crosshole seismic testing were performed on January 6-7, 2010 at the AEP Sporn Power Plant in New Haven, West Virginia. Vibration monitoring was performed at the same six locations that were used in November 2009, and crosshole seismic testing was performed at two of these locations. Laboratory free-free resonant column testing was also performed on undisturbed fly ash specimens to estimate the material damping of the fly ash. This letter report describes the methods used and results, and is accompanied by a CD containing the data.

VIBRATION MONITORING

Vibration monitoring was performed continuously for 30 hours from approximately 9:00 A.M. on January 6 until 3:00 P.M. on January 7 at six locations on the perimeter levees that contain the fly ash and bottom ash at the power plant. The locations are described as follows:

- Location A: outside toe of the bottom ash levee adjacent to the train tracks;
- Location B: outside crest of the bottom ash levee adjacent to the train tracks;
- Location C: outside toe of the fly ash levee adjacent to the train tracks;
- Location D: outside crest of the fly ash levee adjacent to the train tracks;
- Location E: outside crest of the fly ash levee adjacent to the Ohio River; and
- Location F: outside toe of the fly ash levee adjacent to the Ohio River.

These are the same locations that were used for vibration monitoring during the November 2009 survey.

Vibration monitoring was performed using six Blastmate III seismographs, which are manufactured by Instantel. The Blastmate III seismographs record four channels simultaneously during each event: one air wave channel with a microphone, and three ground wave channels using three geophones. The three geophones are oriented orthogonal to each other so that one geophone detects vertical particle motion, and the other two detect horizontal particle motion in two perpendicular directions. The two horizontal geophones are identified as longitudinal and

transverse, with the longitudinal geophone oriented towards the vibration source, and the transverse oriented perpendicular to the longitudinal.

The geophones that accompany the Blastmate III have a damped resonant frequency of approximately 2.0 Hz and the data are sampled in the instrument at a rate of 1,024 samples per second. This allows vibrations to be recorded between the bandwidth of 2.0-250 Hz with minimal distortion. The vibrations imparted to the geophones are converted into voltage, and the voltage is converted to particle velocity using a calibration factor. To minimize wind and surface noise, the geophones are buried in sand a few inches below the ground surface and covered with a heavy weight such as a sand bag or water jug. The serial numbers of the seismographs used at each test location are as follows:

- Location A: Serial #BA11042;
- Location B: Serial #BA11291;
- Location C: Serial #BA10619;
- Location D: Serial #BA11821;
- Location E: Serial #BA11088; and
- Location F: Serial #BA11290.

Each instrument was calibrated according to ISO9001:2000 standards.

Vibration monitoring was performed on January 6-7, 2010 as indicated on the monitoring logs included in Appendix A of this report. During this period, four trains passed by the power plant:

- Train 1: January 6, 1:13 P.M.; approximately 95 seconds in duration;
- Train 2: January 7, 12:23 A.M.; approximately 132 seconds in duration;
- Train 3: January 7, 4:27 A.M.; approximately 120 seconds in duration; and
- Train 4: January 7, 12:05 P.M.; approximately 122 seconds in duration.

Trains 1 and 4 consisted of multiple (typically four) engines with mostly tank cars, and appeared to be traveling at a speed of around 25 mph. Trains 2 and 3 passed during the night and were not visually observed.

The vibration monitoring logs included in Appendix A indicate when the seismographs were actively monitoring and when vibration events were recorded, including the four trains. The monitoring logs indicate that additional events were also recorded. These additional events correspond to occasional testing of the seismographs by stomping on the ground next to the geophones. Details regarding these additional test events are not included herein.

For all logging, vibrations were only recorded when the vibration level exceeded 0.02 in./s. Below this level, vibrations were considered to be within the level of ambient noise. Peak particle velocities observed for each train and monitoring location are summarized in Table 1.

All of the vibration monitoring data are included in ASCII format in Appendix B on the attached CD. Given a sample rate of 1,024 samples/s, the vibration data should be plotted at a

sample rate of 9.7656 x 10⁻⁴ s. Vibration data are presented in the ASCII files text in units of particle velocity in mm/s. Please note that the internal clocks on the six seismographs were set to the nearest minute, so the time stamps on the monitoring data may be slightly out of synch between seismographs.

Excel files containing particle acceleration are also included in Appendix B. Acceleration is defined a change in velocity per unit time, and was derived by calculating the difference in particle velocity between successive points and dividing the difference by the sample rate. For example, if the particle velocity for a given sample time is 0.349 mm/s, the particle velocity for the next sample time is 0.302 mm/s, and the sample rate is $1.019 \times 10^{-4} \text{ s}$, then the particle acceleration is $(0.302 \text{ mm/s} - 0.349 \text{ mm/s})/9.77 \times 10^{-4} \text{ s} = -4.81 \times 10^{-1} \text{ mm/s}^2$, or $-4.90 \times 10^{-3} \text{ g}$.

CROSSHOLE SEISMIC TESTING

Crosshole seismic testing was performed at vibration monitoring Locations B (in bottom ash) and E (in fly ash). Crosshole seismic testing was performed using a three-hole array with one source hole and two receiver holes. The spacing at the ground surface was 10.0 ft, and an inclinometer survey was performed by Mr. Seth Frank to derive borehole spacing information for calculation of wave velocities. A mechanical wedge was used as a borehole seismic source, and BHG-2 borehole geophones were used as receivers. The BHG-2 geophones contain three geophones positioned in three orthogonal directions (one vertical and two horizontal). For crosshole seismic testing, the vertical geophone measures S-waves, while the horizontal geophones measure P-waves. All of the data were recorded using a Geometrics Geode multichannel seismograph.

A set of typical crosshole data is shown in Fig. 1. For this record, the S-waves and P-waves are apparent on each trace. Although the vertical geophones are intended to record S-waves, there is some leakage of P-wave energy onto the records. Conversely, there is also leakage of S-wave energy onto the horizontally oriented geophones, which are primarily intended to record P-wave energy.

Spreadsheets including the details of crosshole seismic testing are included on the attached CD. Calculated wave velocities and values for Poisson's ratio are summarized in Tables 2 and 3, and the data are graphed in Figs. 2 and 3.

FREE-FREE RESONANT COLUMN TESTING

Free-free resonant column testing was performed on 2 fly ash specimens and one clay foundation specimen recovered from the site to calculate material damping. Each specimen was approximately 6.0 in. long and 3.0 in. in diameter. Resonant column testing is performed by suspending the specimens horizontally. Accelerometers are glued to the outer perimeter of one end to detect torsional motion, while a torsional excitation device is fixed to the other end. The specimens are encased in a latex membrane with end caps during testing, and a vacuum pressure of approximately 9.0 psi is applied to provide confinement to the specimens.

When the specimen is excited in torsion, it resonates at a frequency f_n that is calculated by performing spectral analysis of the free vibration record measured with the accelerometers. The auto power spectrum is calculated, which is a curve of accelerometer power versus frequency. The half-power bandwidth method is then used to estimate material damping. Given a resonant frequency f_n and spectral power of A, frequencies f_1 and f_2 are identified as the frequencies corresponding to a power of 0.5A. Material damping is then estimated as:

$$D = (f_2 - f_1)/(2 f_n).$$

Results are summarized in the table below.

Specimen description	Material damping (%)
FLY ASH: recovered from GA-1A-ST-7,	3.9
depth = 48.5-51.0 ft	
FLY ASH: recovered from GA-1A-ST-4,	5.1
depth = 36.5-39.0 ft	
FOUNDATION SOIL: recovered from	7.0
GA-ST-2, depth = 59.0-61.5 ft	

Please note that the material damping of 7.0% measured in the clay foundation soil specimen is higher than the typical range in material damping for clay specimens. Material damping of clay is typically around 2-4%. It was difficult to obtain a measurable signal in the clay specimen, which supports the observation that material damping in the clay is relatively high.

Thank you very much for providing me the opportunity to work with you on this project. Please do not hesitate to contact me if you have any questions or require any additional details or information.

Regards,

Míchael E. Kalínskí

Michael E. Kalinski, Ph.D.

Attachments: Tables 1-3

Figs. 1-3

Appendix A – vibration monitoring logs (on CD)

Appendix B -- vibration data (on CD)

Appendix C – crosshole seismic calculations (on CD)

Table 1. Peak particle velocities (PPVs) recorded for each train and location

Train	Location	Tran. PPV	Vert. PPV	Long. PPV	
		(in./s)	(in./s)	(in./s)	
	A	0.007	0.035	0.016	
	В	0.006	0.023	0.014	
1	С	0.044	0.042	0.047	
1 }	D	ND*	ND	ND	
	Е	ND	ND	ND	
	F	ND	ND	ND	
	A	0.010	0.039	0.019	
	В	0.007	0.024	0.010	
2	С	0.048	0.057	0.046	
2	D	ND ·	ND	ND	
	Е	ND	ND	ND	
	F	ND	ND	ND	
	Α	0.010	0.039	0.013	
	В	ND	ND	ND	
3	С	0.055	0.054	0.053	
,	D	ND	ND	ND	
	Е	ND	ND	ND	
	F	ND	ND	ND	
	A	0.009	0.039	0.016	
	В	0.007	0.021	0.009	
4	С	0.043	0.049	0.047	
'T 	D	0.006	0.014	0.021	
	E	ND	ND	ND	
	F	ND	ND	ND	

^{*}ND = no vibrations detected above threshold level of 0.02 in./s

Table 2. Summary of results from crosshole seismic testing at Location B (bottom ash site)

Depth (ft)	S-wave velocity (ft/s)	· •		Interpretation
10.0	814	?*	?	unsaturated fill
12.5	825	?	?	unsaturated fill
15.0	1061	?	?	unsaturated fill
17.5	1188	?	?	unsaturated fill
20.0	1501	?	?	unsaturated fill
22.5	1122	?	?	unsaturated fill
25.0	1741	3489	0.33	unsaturated fill
27.5	453	3917	0.49	saturated fly ash
30.0	500	5178	0.50	saturated fly ash
32.5	350	3854	0.50	saturated fly ash
35.0	?	5750	?	foundation soil
37.5	1468	5072	0.45	foundation soil
40.0	1505	6471	0.47	foundation soil
42.5	849	5638	0.49	foundation soil
45.0	1120	6414	0.48	foundation soil
47.5	1944	6400	0.45	foundation soil

^{*}Could not be reliably identified on the data.

Table 3. Summary of results from crosshole seismic testing at Location E (fly ash site)

Depth	S-wave velocity		Poisson's	Interpretation
(ft)	(ft/s)	(ft/s)	ratio	<u> </u>
10.0	1242	?*	?	unsaturated fill
15.0	1178	2195	0.30	unsaturated fill
17.5	690	2541	0.46	unsaturated fill
20.0	862	1930	0.38	unsaturated fill
22.5	963	1784	0.29	unsaturated fill
25.0	875	1718	0.33	unsaturated fill
27.5	1041	?	?	unsaturated fill
30.0	554	993	0.27	unsaturated fly ash
32.5	392	3963	0.50	saturated fly ash
35.0	364	5267	0.50	saturated fly ash
37.5	415	4740	0.50	saturated fly ash
40.0	321	4295	0.50	saturated fly ash
42.5	461	4282	0.49	saturated fly ash
45.0	470	4710	0.49	saturated fly ash
47.5	480	5894	0.50	saturated fly ash
50.0	516	5233	0.50	saturated fly ash
52.5	811	5233	0.49	saturated fly ash
55.0	403	3917	0.49	saturated fly ash
57.5	555	3942	0.49	saturated fly ash
60.0	527	5907	0.50	saturated fly ash
62.5	744	2069	0.43	foundation soil
65.0	771	2518	0.45	foundation soil
67.5	567	2389	0.47	foundation soil

^{*}Could not be reliably identified on the data.

a. S-wave arrivals

b. P-wave arrivals (rescaled view of Fig. 1a)

Fig. 1. Typical records from crosshole seismic testing (recorded at Location E at a depth of 40.0 ft below the ground surface in fly ash).

Fig. 2. Graph of wave velocities and Poisson's ratio from crosshole seismic testing at Location B (bottom ash site)

Fig. 3. Graph of wave velocities and Poissons ratios from crosshole seismic testing at Location E (fly ash site)

CD WITH VIBRATION MONITORING DATA

PHILIP SPORN BOTTOM ASH AND FLY ASH DISPOSAL FACILITIES

VIBRATION MONITORING DATA PREPARED BY: DR. MICHAEL KALINSKI NOVEMBER 2009 & JANUARY 2010

CSX TRANSPORTATION LETTER REGARDING RAILWAY FREQUENCIES AND SCHEDULES BETWEEN HUNTINGTON, WV AND PARKERSBURG, WV

November 10, 2009

Mr. Seth Frank Geo-Environmental Associates, Inc. 3502 Overlook Circle Knoxville, Tennessee 37909

Dear Mr. Frank:

You recently contacted CSX to request information concerning a train schedule for New Haven, West Virginia.

We hope you will understand, but because of security concerns, we cannot disclose train schedules or frequency information to the public.

We apologize for not being able to provide the information you requested, and thank you for contacting CSX.

Sincerely,

TellCSX Team

еj

Ref: 9309v7469016

APPENDIX III

FIELD AND LABORATORY TEST DATA

FIELD DATA FROM: "PHILIP SPORN ELECTRIC GENERATING PLANT BOTTOM ASH FACILITY – ENGINEERING REPORT"

PREPARED/COMPILED BY: GEOTECH/HYDRO/SITE SECTION OF AMERICAN ELECTRIC POWER CORPORATION

DATED: 1996

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

JOB NUMBER 3966													
COMPANY APPALACHIAN POWER COMPANY BORING NO. 96-01 DATE SHEET 1 OF 2													
PROJECT Sporn fly ash pond dikes BORING START 06/14/96 BORING FINISH 06/20/96													
COORDINATES N 717,700.5 E 1,735,921.2 PIEZOMETER TYPE WELL TYPE													
GRO	GROUND ELEVATION 592.7 SYSTEM STATE PLANE HGT. RISER ABOVE GROUND DIA												
WAT	WATER LEVEL \(\sum \) 27.9 \(\textstyle \) DEPTH TO TOP OF WELL SCREEN \(\textstyle \) BOTTOM \(\textstyle \)												
	TIME WELL DEVELOPMENT BACKFILL QUICK GROUT												
DATE 6-20-96 FIELD PARTY MCR-WEB RIG BK-81							BK-81						
					l					·			
SAMPLE NUMBER	SAMPLE	DE IN F	MPLE PTH FEET	PENET RESIS	DARD RATION TANCE	OTAL ENGT COVE	RQD %	DEPTH IN FEET	GRAPH	SCS	SOIL / ROCK IDENTIFICATION	MELL	DRILLER'S NOTES
		FROM	~····	BLOV	VS / 6"	א ה"ר			_)	ROAD BASE		
		0.0	1.5				ļ	-	1		NOAD BASE		
3	SS SS	3.0 5.0	4.5 6.5		10-7)-11	1.5		5.		SW	BLACK BOTTOM ASH Moist. YELLOWISH ORANGE GRAVELLY SAND Dry to		
4	SS	8.5	10.0	10-2	5-30	1.2		-	\(\frac{1}{\sqrt{2}}\)		moist, 3/4" max size. BLACK BOTTOM ASH Moist.		
5	SS	11.7	13.2		2-16	1.5		10 -	D 1		DARK BROWN SANDY SILT Moist, v-fine grain		
								15 -			sand.		
6	ss	16.7	18.2	7-7	-11	1.5		- -	\(\frac{1}{1}\)		BLACK BOTTOM ASH Dry.		;
7	ss	21.7	23.2	7-:	3-2	1.5		20	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Moist this area		
8	ss	26.7	28.2	1-	1-1	1.5		25 - - - - 30	01000		Saturated this area	垦	
9	ss	31.7	33.2	1-:	2-2	1.5		- - -	\(\rangle \) \(\lambda \) \(CL	GREENISH BROWN SANDY CLAY Saturated,		
10	SS	36.7	38.2	3-:	2-2	1.2		35 - - - 40		CL	low plasticity. MULTI-COLORED BROWN SANDY CLAY Wet to saturated, low plasticity, v-fine sand.		
11	ST	41.7	43.7			0							Belive material to soft to pickup in
12	ST	43.7	45.7			0		, AF:	1				tube.
								45 -					
		TYPE	E OF C	ASING	USED						Continued Next Page		: :
 -	Τ		ROCK				+	DICZO			The second secon	- OF	PEN TURE
Х			25 HS/					PIEZOM		ED S	CREEN, G = GEONOR, P = PNEUMATIC	- U	H14 100C
	1	9" x 6.	25 HS/	4									EOMON
				ADVA	NCER	4"		WELL T	YPE:		W = OPEN TUBE SLOTTED SCREEN, GM	- G	ILOIVIOIN
ļ			<u>ASING</u> ASING			3" 6"	\dashv			1	RECORDER WEB		

JOB	NUM	BER _	3966			_		LO	u c	P BORING				
COM	IPAN	Y <u>AP</u>	PALA	CHIAN POWE	R CC	MPA	<u>\N</u> Y			BORING NO. <u>96</u>				2 OF 2
PRO	JECT	Spo	orn fly	ash pond dik	es				1	BORING START .	06/14/96	BORING FINISH	_0	6/20/96
SAMPLE NUMBER	SAMPLE	DE IN F	MPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOUERY	RQD %	DEPTH IN FEET	GRAPH LOG	SCS		SOIL / ROCK IDENTIFICATION		WELL	DRILLER'S NOTES
SAMPLE SAMPLE INUMBER	SAMPLE SAMPLE	DE	PTH EET	STANDARD PENETRATION RESISTANCE BLOWS / 6" 1-1-2	TOTAL LENGIHY 6 RECOVERY	%	IN	GRAPH	၁ လ	DARK GRAY S			MELL	1 1

			3966	DIMAN DOWE	D ()(>8423 A	MV			BORING NO. 96-02 DATE S	UEET	1 OF 2
				CHIAN POWE ash pond dik			<u>(IN</u> T			BORING START <u>06/13/96</u> BORING FINISH		
		•	-	3,158.5 E 1,7						PIEZOMETER TYPE WELL TY		•
				594.6 SY						HGT. RISER ABOVE GROUND		•
				· ¥		¥				DEPTH TO TOP OF WELL SCREEN BO		
TIME		EVEL	<u> </u>	<u>=</u>		- = -				WELL DEVELOPMENT BACK		
DATI										FIELD PARTY MCR-WEB		
						l I I	- 100				r - t	
SAMPLE NUMBER	SAMPLE	DE	MPLE EPTH FEET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOUERY		DEPTH IN FEET	GRAPH LOG	SOSA	SOIL / ROCK IDENTIFICATION	MELL	DRILLER'S NOTES
1	SS	0.0	1.5	10-12-13	1.2		-	A Z		GRAY BOTTOM ASH Dry, with 2 to 3" of sandy clay.		
ż	ss	3.0	4.5	10-13-13	1.5			A Z		GRAY BOTTOM ASH Dry.		
3	SS	5.0	6.5	9-8-7	1.3		5 - -		CL	LIGHT BROWN CLAY Dry, medium to high plasticity.		
4	SS	8.5	10.0	16-16-12	1.1		10 -	•	GP.	DARK BROWN SAND AND GRAVEL Dry, 3/4" max size, rounded with some fines.		
5	SS	11.9	13.4	8-10-8	1.4		- - -					
6	SS	16.9	18.4	6-11-9	1.3		15 - -			DARK BROWN SAND AND GRAVEL Moist, quartz, 1/2" max size, rounded with some		; ; ;
7	SS	21.9	23.4	7-7-7	1.3		20 -			fines. DARK BROWN SAND AND GRAVEL Saturated,		:
							25 -			rounded, 1" max size, quartz with some fines.		
8	88	26.9	28.4	1-1-2	1.5		30 -	* *	1	DARK GRAY FLY ASH Saturated.		
9	SS	31.9	33.4	1-1-1	1.5			* * *				:
10	SS	36.9	38.4	1-1-1	1.5		-	\$ & \$ & \$ & \$ & \$ & \$ & \$ &				:
11	ss	41.9	43.4	4-4-6	1.3		40 –	* *	CL	DARK GRAY CLAY Wet, medium to high		-
12	ST	43.9	45.9		1.0		45	-		plasticity, trace of organic material.		;
13	ST	46.9	48.9		2.0					·		
		TYP	E OF C	ASING USED)	<u> </u>		14,000		Continued Next Page		
X		NQ-2	ROCK .25 HS/	CORE			PIEZON SLO	METER OTTE	R TYP		= OPI	EN TUBE
		9" x 6	.25 HS/	4	411		WELL T			W = OPEN TUBE SLOTTED SCREEN, GN		EOMON
		NW C	ASING ASING ASING		4" 3" 6"	_	VVELL I	ורב:		RECORDER WEB	., · di	
L		JAA C	HOUNG		<u> </u>							

		IBER _ Υ ΔΡ		CHIAN POWE	R CC	- MPA	MY			RORING NO. 96	3-02 DATE	SI	HEET	_2_ OF2_
				ash pond dik			<u></u> .					BORING FINISH		
SAMPLE NUMBER	SAMPLE	DE	IPLE PTH EET	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH ECOUERY	RQD %	DEPTH IN FEET	GRAPH LOG	8 0 8		SOIL / ROCK)	MELL	DRILLER'S
14	SS	51.9	TO 53.4	3-3-4	1.5		55 —							
15	S	56.9	58.4	1-3-4	1.5									Grouted hole from 58.4' to grade with approximately 75 gallons of quick grout.
														7

			SEVI VA	CHIAN		D CC	_ `````	NIV			BORING NO. 96-03 DATE	CHEET	1 OF 2
					-			<u> </u>			BORING START <u>06/17/96</u> BORING FIN		
		•	-	8,215.9							PIEZOMETER TYPE WELL		
				•				TATE P			HGT. RISER ABOVE GROUND		
						O I EIVI	. ,				DEPTH TO TOP OF WELL SCREEN		
		EVEL	<u>¥</u> 22	2.2	<u>¥</u>		<u>¥</u>				WELL DEVELOPMENTB/		
TIME											FIELD PARTY MCR-WEB		
DATE			6-18	B-96						ł	-IELD PARTY WICH-WEB	rio	DI7-01
SAMPLE NUMBER	SAMPLE	DE	MPLE PTH FEET	PENET RESIS	DARD RATION TANCE	TOTAL LENGTH RECOUERY	%	DEPTH IN FEET	GRAPH	S C S	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
1	SS	0.0	1.5		2-4	1.3			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		GRAY FLY ASH Moist.		
2	SS	3.0	4.5	6-	5-4	1.5			4.4		GRAY BOTTOM ASH Moist.	_	
3	ss	5.0	6.5	3-7	2-2	1.5		5 -	10.1				
									./> .t				
4	ss	8.5	10.0	4-4	6-6	1.5			4		BLACK COAL		,
	-							10 -		SC	LIGHT BROWN SANDY CLAY Dry to moist,	~	
5	ss	11.7	13.2	4-3	3-3	1.5					v-fine grain sand.		:
										CL	DARK GRAY CLAY Wet, medium to hight plasticity, trace of grganic material.		
								15 -			prasticity, trace of grgunio materials		
6	ss	16.7	18.2	7-	1-1	1.5							:}
		_						20 ~					
7	ST	21.7	23.7			2.0			[<u> </u>		•	立	
	١,	21.7	20.7	}		2.0						Ì	
	-		 				-	25 -	<u> </u>				
8	ss	26.7	28.2	1_	1-1	1.5						- }-	
	00	20.7	20.2		1-1	'						1	
-			 					30 -	-				
9	ST	31.7	33.7			2.0			=				į
9	31	31.7	33.7			2.0							: 1
			-			ļ		35 -	}				
	ss	00.7	20.0			1.5				SP	DARK GRAY AND BROWN SILTY SAND Wet to	$\overline{}$	
10	55	36.7	38.2	1-7	2-2	1.5			-	31	saturated, quartz, fine grain.		:
ļ			ļ					40 ~]				
									- -	GW	GRAY SAND AND GRAVEL Saturated, quartz,		!
11	SS	41.7	43.2	7-1	4-19	.6				GW	1/2" max size, rounded.		
								45 -	8.		,		1
				İ					50		Barrer		
12	SS	46.7	47.6	37-8	50/.4	.9			-80		Brown		:
				<u> </u>			Ĺ.,_,		100	<u></u>			
		TYP	E OF C	ASING	USED)					Continued Next Page		
-			ROCK					PIEZON	METEF	₹ TYP	E: PT = OPEN TUBE POROUS TIP, S	S = O	PEN TUBE
X		6" x 3	25 HS/	Α				SLO	OTTE	D S	CREEN, G = GEONOR, P = PNEUMA	IC	·
			25 HS/	ADVAI	ICER	4"		WELL T	YPE:	0	W = OPEN TUBE SLOTTED SCREEN,	3M = 0	BEOMON
			ASING		√L-Π	3"			··	Ť	RECORDER WEB	-	
			ASING			6"		<u> </u>			HECORDER WED		

LOG OF BORING JOB NUMBER 3966 COMPANY APPALACHIAN POWER COMPANY BORING NO. 96-03 DATE___ SHEET 2 OF BORING START <u>06/17/96</u> BORING FINISH <u>06/18/96</u> PROJECT Sporn fly ash pond dikes PENETRATION RESISTANCE BLOWS / 6" RQD % SAMPLE SAMPLE NUMBER DEPTH SAMPLE GRAPH LOG DRILLER'S DEPTH SOIL / ROCK O IN IN FEET Ø NOTES IDENTIFICATION FEET \supset FROM TO 13 SS 1.5 Same with 3/4" max size. 51.7 53.2 18-19-20 55 Brown 14 SS 56.7 57.0 50/.3 .3 60 LIGHT GRAY SANDSTONE Fine grain. 15 SS 59.8 60.0 50/.2 .2

			3966 ΡΔΙ Δ	CHIAN POWE	R CO	_ MP∆	NY			BORING NO. 96-04 DATE	SHFFT	1 OF 2
				ash pond dik			<u></u>			BORING START 06/18/96 BORING FINIS		
COC	RDIN	NATES	N 717	7,954.5 E 1,7	735,7				1	PIEZOMETER TYPE WELL T	PE _	
GRO	UND	ELEVA	TION!	593.5 S	YSTEM	ST	ATE PI	<u>.an</u> e		HGT. RISER ABOVE GROUND		
WAT	ER LI	EVEL.	ਊ	T		<u>v</u>				DEPTH TO TOP OF WELL SCREEN BO		1
TIME										WELL DEVELOPMENT BAC		
DATI	Ξ					-			1	FIELD PARTY MCR-WEB	RIG	BK-81
SAMPLE NUMBER	SAMPLE	DE	MPLE PTH FEET	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY		DEPTH IN FEET	GRAPH LOG	8 U S D	SOIL / ROCK IDENTIFICATION	MELL	DRILLER'S NOTES
		0.0		22011070						ROAD BASE		
2	SS	3.0	4.5	11-12-13	1.3		5		SC	DARK BROWN CLAYEY SAND Moist, trace of small gravel.		
3	SS	5.0	6.5	11-19-16	1.5		-		SP	DARK BROWN GRAVELLY SAND Moist, 1/2" max size, rounded with fines.		
4	SS	8.5	10.0	9-12-10	1.5		10 -					
5	SS	11.6	13.1	16-22-17	1.5		15 —	0.000		BLACK BOTTOM ASH Moist with 1" layer of silty clay with slight plasticity.		:
6	ss	16.6	18.1	9-9-7	.4		- - -	1.4.1		DARK BROWN, BLACK CLAYEY SAND Moist, some organic, may be older road base.		
7	SS	21.6	23.1	5-5-6	1.5		20 -	4		BLACK BOTTOM ASH Saturated.		:
	_				ļ		25 -	* *		BLACK FLY ASH Saturated.		:
8	ss	26.6	28.1	1-2-2	1.2		-	* *				:
9	ss	31.6	33.1	1-1-1	1.5		30 -	* * * * * * *				
10	ss	36.6	38.1	.2-3-3	1.5		35 — 	* * *	CL	ORANGE AND LIGHT BROWN MOTTLED SILTY CLAY Wet to saturated, medium to low		
11	ss	41.6	43.1	3-3-3	1.5		40 -			plasticity. Same as sample with trace of organic material,		;
							45 -					
12	ST	46.6	48.6		2.0		- - -					::
		TYP	E OF C	ASING USED)	T				Continued Next Page		: : :
X			ROCK 25 HS/				PIEZOM	ETER	TYP	E: PT = OPEN TUBE POROUS TIP, SS CREEN, G = GEONOR, P = PNEUMATIO	= OP	EN TUBE
		9" x 6.	25 HS/	A	4"		SLC WELL TY			W = OPEN TUBE SLOTTED SCREEN, GI		EOMON :
	<u> </u>	NW C	ASING	ADVANCER	3"		***************************************		Ĭ	RECORDER WEB		
	1	SW C	ASING		6"				1	NECOUNTER WED		

JOB NUMBER 3966

COMPANY APPALACHIAN POWER COMPANY BORING NO. 96-04 DATE SHEET 2 OF 2

PROJECT Sporn fly ash pond dikes BORING START 06/18/96 BORING FINISH 06/19/96

NUMBER	SAMPLE	DE	IPLE PTH EET TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	8 0 8 1	SOIL / ROCK IDENTIFICATION	MELL	DRILLER'S NOTES
13	SS	51.6	53.1	1-1-1	1.5		- - 55 —		SC	GRAY AND BROWN CLAYEY SAND Wet to saturated, v-fine grain sand, slight to non plasticity.		
14	SS	59.3	_60.8	3-3-3	8		60 —		SP	DARK BROWN SAND Saturated, fine grain, with some fines, quartz.		
15	SS	64.3	65.8	15-16-2	1.5		65 -			<u>DARK BROWN SAND</u> Saturated, v-fine grain with some fines, quartz		
16	SS	69.3	70.8	8-9-11 	-1.5		70 - -		SW	DARK BROWN SAND Saturated, quartz.		
17	SS	74.3	75.8	14-14-19	1.5		75 — - -					
	ļ	79.3	80.8	8-10-8	1.5		80 — - - -		SP	DARK BROWN AND GRAY SAND Saturated, quartz, fine grain.		
9	SS	84.3 87.7	85.1 87.9	8-50/.3 50/.2	8 -2		85 — 	200	GW	BROWN SAND AND GRAVEL Saturated, quartz, 1/2" max size, rounded. GRAY CLAY SHALE Dry.	7	
				·					:			

			3966 DDALA4	CHIAN	DOWE	D CC	_ \\/ (1) /	MV			BORING NO. 96-05 DATES	ИБЕТ	1 OF 2
				CHIAN ash po				<u>(11)</u> 1			BORING START 06/12/96 BORING FINISH		
			•	•							PIEZOMETER TYPE WELL TY		
								ATE PL			HGT. RISER ABOVE GROUND		
		EVEL			Y		<u>V</u>	·			DEPTH TO TOP OF WELL SCREENBO		
TIME			= -1	···	<u> </u>		=			,	WELL DEVELOPMENT BACK	(FILL Q	UICK GROUT
DATE	Ξ		6-1	2-96	 						FIELD PARTY MCR-WEB	IG	BK-81
			4015	OTAN	DADD		DOD			Τ			
SAMPLE NUMBER	SAMPLE	DE	MPLE EPTH FEET TO	PENET RESIS	IDARD RATION TANCE VS / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH	8 0 8 1	SOIL / ROCK IDENTIFICATION	MELL	DRILLER'S NOTES
1	SS	0.0	1.5		2-35	1.0			4	-	GRAY BOTTOM ASH		· ·
2	SS	3.0	4.5	11-1	2-15	1.2		-	N.	SP	DARK BROWN GRAVELLY SAND Moist, 1/2"		
3	SS	5.0	6.5	10-1	0-15	1.3		5	F	SM	max size, some fines.		
	55	J.,U	0.0	'0'	J .V			-	111		BROWN CLAYEY SILT Moist, slight to non plasticity.		
5	ss	8.5	10.0	8-1:	3-15	1.5		-		sc			
		_						10 -			LIGHT AND DARK BROWN CLAYEY SAND Moist, trace of small gravel.		
6	ss	11.7	13.2	11-1	1-13	1.2		-	-1	GP	DARK BROWN CLAYEY SAND AND GRAVEL		;
								16	•		Moist, quartz, 3/4" max size, rounded.		
								15 -					
7	SS	16.7	18.2	3-/	2-4	1.5		-	븯	SM	LIGHT BROWN SILTY SAND Moist, v-fine grain sand.		
								20			DARK GRAY SILTY CLAY Wet , medium to low		
8	SS	21.7	23.2		4-6	1.5		-	=	CL	plasticity,trace of organic material. LIGHT BROWN CLAYEY SILTY Moist to wet,		:
$ ^{\circ} $	33	21.7	23.2	3-4	4-0	1.5		-			slight plasticity.		
								25 -					
9	ss	26.7	28.2	2-:	2-1	1.1		-	4		GRAY BOTTOM ASH Saturated.		į
								-	0.1	9		}	:
			 					30 -	1	9			
10	ss	31.7	33.2	1-2	2-2	1.3		-		CL			
								35 -	<u> </u>	-	to low plasticity, trace of organic.		
								- 33					!
11	SS	36.7	38.2	1-	1-1	1.5		-]		GRAY FLY ASH Saturated.		1
								40 -	* _ \$				-
12	SS	41.7	43.2	1_	1-1	1.5		-	∤ %∜	ŧ			
12	33	41.7	43.2	'- 	1-1	1.5		-	<u> </u>	CL	DARK GRAY SILTY CLAYMoist, low to medium		
		-	<u> </u>					45			plasticity, trace of organic material.		
13	ss	46.7	48.2	1-1	1-2	1.5		-			BROWN CLAY Wet to saturated, medium to		
								-		1	low plasticity.	Ţ.	
	1	TYP	F OF C	ASING	USED	1		··· -	1 	.1	Continued Next Page	!!	‡ ‡ ;
	1		ROCK				-	PIEZOM	FTE			= OP	EN TUBE
X		6" x 3	25 HS/	4			\Box				CREEN, G = GEONOR, P = PNEUMATIC		
-			25 HS/ ASING	A ADVAI	NCER	4"		WELL TY	YPE:	O'	W = OPEN TUBE SLOTTED SCREEN, GM	I = G	EOMON
		NW C	ASING			3"					RECORDER WEB		
L	1	SW C	ASING			6"	L			1			

LOG OF BORING JOB NUMBER _ 3966 BORING NO. 96-05 DATE COMPANY APPALACHIAN POWER COMPANY SHEET 2_ OF_ PROJECT Sporn fly ash pond dikes BORING START <u>06/12/96</u> BORING FINISH <u>06/12/96</u> SAMPLE SAMPLE NUMBER DEPTH SAMPLE GRAPH LOG DEPTH SOIL / ROCK WELL DRILLER'S O IN IN FEET Ø IDENTIFICATION NOTES FEET כ FROM TO ST 51.7 53.7 2.0 55 15 SS 56.7 58.2 2-2-3 1.5 DARK GRAY SILTY CLAY Wet to saturated, low to medium plasticity, trace of v-fine grain sand Boring grouted from grade to 58 2'

			3966			D 00		MIV		-	BORING NO. 96-06 DATE S	HEET	1 OF 1
				<u>CHIAN</u> ash po				<u>(IN</u> T			BORING START 06/18/96 BORING FINISH		
		-	_	-							PIEZOMETER TYPE WELL TY		
								ATE PL			HGT. RISER ABOVE GROUND		
							<u></u>				DEPTH TO TOP OF WELL SCREENBO		
 		EVEL.	≌ 23	3.6	<u>¥</u>						WELL DEVELOPMENTBACK		
TIME			C 4	0.00			+		\dashv		FIELD PARTY MCR-WEB		
DATI			0-16	8-96									
SAMPLE	SAMPLE	DE	MPLE PTH FEET	STAN PENETI RESIS' BLOW	RATION TANCE	TOTAL LENGTH RECOUERY	%	DEPTH IN FEET	GRAPH	8 2 8 0	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S
1	SS	0.0	1.5	·	1-4	1.5		-	* *		GRAY FLY ASH Moist.		,
2	SS	3.0	4.5	5-6		1.5		5 -	φ φ		GRAY BOTTOM ASH Saturated.		
3	SS	5.0	6.5	3-3	3-2	1.5		-	100				
4	SS	8.5	10.0	5-5	5-6	1.5		10 -		CL	BROWN SILTY CLAY Moist, low to medium plasticity (DIKE MATERIAL).		
5	ss	11.5	13.0	3.4	1-2	1.5		15 -			DARK BROWN SILTY CLAY Saturated, medium to low plasticity, (DIKE MATERIAL).		
6	SS	16.5	18.0	4-4	1-3	1.5		15		SM	GRAY SILTY SAND Saturated, v-fine grain, quartz.		
7	SS	21.5	23.0	1-	1-2	1.3		25				贡	:
8	SS	26.5	28.0	1-	1-1	1.5		30 ~		CL	DARK GRAY CLAY Saturated, medium to low plasticity with v-fine grain sand lens.		:
9	SS	31.5	33.0	2-3	3-3	1,5		30					
] 											<u>.</u> !
			-										
		ТҮР	E OF C	ASING	USEC)	<u> </u>	L	1				
		NQ-2	ROCK	CORE				PIEZOM	/ETE	RTYP	E: PT = OPEN TUBE POROUS TIP, SS	= OP	EN TUBE
X			.25 HS					SL	OTTI	ED S	SCREEN, $G = GEONOR$, $P = PNEUMATIC$;	
-	+	9 X 6	.25 HS. ASING	A ADVAI	VCER	4"		WELL T	YPE:	O	W = OPEN TUBE SLOTTED SCREEN, GM	1 = G	EOMON
		NW C	ASING	ì		3"					RECORDER WEB		
		SW C	ASING	·		6"	1						

FIELD DATA FROM: "PHILIP SPORN ELECTRIC GENERATING PLANT UNIT 5 ASH FACILITY – ENGINEERING REPORT"

PREPARED/COMPILED BY: THE GEOTECHNICAL ENGINEERING SECTION OF AMERICAN ELECTRIC POWER SERVICE CORPORATION

DATED: JULY 1998

			BER _						Ý		u 0	. 5011110	
	COM	IPAN'	Y <u>AP</u>	PALA	<u>CHIAN</u>	POWE	R CO	MPA	MY			BORING NO. 96-101 DATE SHEET	
,	PRO	JECT	_Spc	orn fly	<u>ash po</u>	nd dik	es				1	BORING START $06/05/96$ BORING FINISH 06	5/05/96
Ý.	000	RDIN	IATES .	N 720	0,983.0	E 1,7	34,51	6.1				PIEZOMETER TYPE SS WELL TYPE	
•	GRO	UND	ELEVA	TION	619.0	SY	STEM		ATE P	LANE	= 1	HGT. RISER ABOVE GROUND DIA	
	\Λ/ΔΤΙ	FRII	VEL	<u></u>	· · · · · · · · · · · · · · · · · · ·	¥		<u>v</u>			(DEPTH TO TOP OF WELL SCREEN 24.4 BOTTOM	33.4
	TIME			<u>~</u>		=				-	١	WELL DEVELOPMENT NO BACKFILLQ	UICK GROUT
	DATE										ſ	FIELD PARTY MCR-REB RIG I	BK-81
	DATE	-				L					,		
	μæ	Ш		IPLE	STAN	IDARD	ıΞŻ	RQD	DEPTH	I	v		550 1 5516
	집	AMPL		PTH	PENET	RATION TANCE	ESET ELECT	:	IN	GRAPI	U	SOIL / ROCK	DRILLER'S
	SAMPLE NUMBER	SA		FEET			EES EES	%	FEET	유기	ω	IDENTIFICATION 3	NOTES
	1		FROM 0.0	TO	BLOV	VS / 6"	0					No sample taken boring in road way	
	٠		0.0				"]			
	2	ss	3.0	4.5	12-1	13-16	1.1				SM	BROWN SILTY GRAVELLY SAND Dry to moist,	
									5 -	111	•	1/2" max size, rounded, quartz.	
	3	SS	5.0	6.5	7-1	9-9	1.2		. •	111			
										111			
	3	ss	8.5	10.0	3-	4-5	1.2			-7//	SC		
									10 -	1//		trace of gravel.	
	4	ss	11.5	13.0	17-2	27-38	1.2			-111	SM	1 124 124	
										111		grain, trace of gravel, quartz.	
				ļ					15 -	 			
ĺ	5	ss	16.5	18.0	12-1	19-26	1.1]]]			
٠, ا		-								111			
3									20 -	111			20.0 Top of seal.
فحد				l						111	0.47	angun on ust the Other Maint tens of small	·
	6	SS	21.5	23.0.	16-2	21-27	1.1]	sw	BROWN GRAVELLY SAND Moist, trace of small gravel, quartz, rounded.	22.0 Top of sand.
							11		25 -	<u>-</u> ::::		[.] [.]	24.4 Top of screen.
-									25	-			C-13-60
	7	SS	26.5	28.0	. 12-2	20-23	1.2				GP	BROWN SAND AND GRAVEL Moist to wet, quartz, rounded, 3/4" max size, some fines.	
					}					+.	}	qualiz, founded, 5/4 max size, some mos.	
					 -		1		30 -	_ ••'	1		
	8	ss	31.5	33.0	4-	5-7	1.1			-117	SM	BROWN SILTY SAND Moist, 100% fine grain.	
	9	ST	33.5	25.5			1.6			111		Push 2.0	han Day and Asian
	-	31	33.3	35.5			1.0		35 -	+==	CL		34.0 Bottom of pipe. 34.4 Bottom of
	10	ss	36.5	38.0	4.	6-8	1.1			丰		PSI 800	screen. 584,6
		00	00.0	00.0	,	• •	"			+=-	1	Top of sample, BROWN SILTY SAND Bottom of sample, LIGHT GRAY CLAY Moist,	35.0 Bottom of sand.
				.,					40 -	‡=	1	low to medium plasticity.	
									40	旨			
	11	SS	41,5	43.0	4-	5-6	1.1		•	111	SM	DARK GRAY SILTY SAND Wet, non to slight plasticity, with reddish brown quartz sand lens.	
	12	ST	43.5	45.5			1.5				ML	PUSH 2.0	
				 					45 -			TIME 5 SEC	
	13	SS	46.5	48.0	. 7-	9-11	1.1			-	SP	PSI 800	
												Bottom of sample, Drillers identification fly ash	
	-							\vdash \dashv	l	J	.l		<u> </u>
	<u> </u>	· · ·				USEL) 					Continued Next Page	
	-	-			CORE				PIEZON	METER	TYF	PE: PT = OPEN TUBE POROUS TIP, SS = OP	EN TUBE
35	X	+		.25 HS. .25 HS.					SL.	ITIO.		SCREEN, G = GEONOR, P = PNEUMATIC	
					ADVA	NCER	4"		WELL 1	TYPE:	0	W = OPEN TUBE SLOTTED SCREEN, GM = G	EOMON
		1		ASING			3"					RECORDER REB	

LOG OF BORING JOB NUMBER 3966 BORING NO. <u>96-101</u> DATE_____ SHEET <u>2</u> OF COMPANY APPALACHIAN POWER COMPANY BORING START 06/05/96 BORING FINISH 06/05/96 PROJECT Sporn fly ash pond dikes STANDARD PENETRATION ZEL WIND STANDARD RESISTANCE BLOWS / 6" RQD % SAMPLE SAMPLE NUMBER DEPTH SAMPLE GRAPH LOG WELL DRILLER'S SOIL / ROCK DEPTH υ IN IN FEET Ø **NOTES IDENTIFICATION FEET** כ FROM TO Top of sample, BROWN SILTY BROWN GRAVELLY SAND Moist, 1/2" max size, rounded, quartz.

	JOB	NUN	IBER _	3966			-		LO	GC	DE BORING		
	COM	PAN	Y <u>AP</u>	PALA	CHIAN POWE	R CO	MP/	<u> M</u> Y			BORING NO. <u>96-102</u> DATE S		
	PRO	JECT	_ <u>Spc</u>	rn fly	ash pond dik	es		· · · · · · · · · · · · · · · · · ·			BORING START <u>06/05/96</u> BORING FINISH		
į					0,707.5 E 1,7						PIEZOMETER TYPE WELL TY		
,	GRO	UND	ELEVAT	TION!	619.6 SY	STEM	S]	TATE PL	_ANI		HGT. RISER ABOVE GROUND		
	WAT	ER L	EVEL.	<u> </u>	T		<u>¥</u>				DEPTH TO TOP OF WELL SCREENBO		
	TIME										WELL DEVELOPMENT BACK		
	DATE										FIELD PARTY MCR-REB R	IG	BK-81
	SAMPLE NUMBER	LE E	l .	MPLE PTH	STANDARD PENETRATION RESISTANCE	AL STH VERY	RQD	DEPTH	I O	ν υ	SOIL / ROCK	j.	DRILLER'S
	E E	AMP	IN F	EET	RESISTANCE	PRO	%	IN	GRAP!	S	IDENTIFICATION	WELL	NOTES
	ωz	S	FROM	TO	BLOWS / 6"	שרק		FEET		Э			
	1		0.0			0		-	1		NO SAMPLE TAKEN BORING IN ROAD AUGEB CUTTINGS INDICATE BROWN SAND AND		Boring was grouted from grade to 48.2'
								_		05	⊥ GRAVEL		with quick grout.
	2	SS	3.0	4.5	12-16-19	1.1		-		SP	BHOWN GRAVELLY SAND Moist, 1/2" max		
	3	SS	5.0	6.5	17-21-26	1.2		5 -		İ	size, rounder, quartz with fines.		
								-					
	4	SS	8.5	10.0	13-16-19	1.2						}	1
								10 -			·		
	5	SS	11.7	13.2	15-28-32	1.2		-				İ	
										ļ	,		
								15 -]				
	6	SS	16.7	18.2	17-21-26	1.2		-					
\mathbf{Y}								-	ļ				
1		-						20 -					
	7	SS	21.7	23.2	19-21-24	1.1		-	-		Sample moist to wet.		
1						. [_					-
J								25]
	8	SS	26.7	28.2	9-9-11	1.1		-	11	SM	DARK BROWN SANDY SILT Moist, non-plastic.	1	
ļ								_]]]				
]								30 -	111				
	9	SS	31.7	33.2	3-4-5	1.1		-	17	SC	BROWN SANDY CLAY Moist, low plasticity,	1	
-	10	ST	33.7	35.7		?		-			with v-fine sand lens. Time 5 sec.		
					<u> </u>			35 -			Push 2.0		_
Ì	11	SS	36.7	38.2	4-4-5	1.1		-	H	SM	PSI 1000	1	
	ļ							-] []		BROWN SILTY SAND Moist, with very fine sand lens.		!
1							•	40 -]	1		ļ	
ļ	12	ss	41.7	43.2	3-5-8	1.1		-		SP	BROWN GRAVELLY SAND Moist, 3/4" max	1	
]			size, rounded, quartz.		
					<u> </u>			45 -		l			
١	13	SS	46.7	48.2	13-15-21	1.2			-				
ļ									 	<u> </u>		1	
			TYPE	OF C	ASING USED	ll		i	l	l		L	<u> </u>
ا (Х	Γ		ROCK				PIEZOM	ETE	TYI	PE: PT = OPEN TUBE POROUS TIP, SS	= OF	PEN TUBE
			6" x 3.	25 HS/	4						SCREEN, G = GEONOR, P = PNEUMATIC		
Į			9" x 6.		ADVANCER	4"		WELLT	YPE:	C	W = OPEN TUBE SLOTTED SCREEN, GN	1 = G	GEOMON
Ì				ASING		3"					RECORDER REB		

			BER _					_						
						POWE		MPA	<u>M</u> Y			BORING NO. 96-103 DATE SI		
			•	-	-	nd dik						BORING START <u>06/04/96</u> BORING FINISH		
												PIEZOMETER TYPE WELL TYP		
,	GRO	UND	ELEVA ¹	TION	31 <u>8.0</u>	_ SY	STEM	<u>ST</u>	ATE PL	ANE		HGT. RISER ABOVE GROUND		
- 1	WAT	ERLE	VEL	<u>\sqrt{\sq}}}}}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{</u>		<u>¥</u>		<u>¥</u>				DEPTH TO TOP OF WELL SCREEN BOT		
	TIME			Ξ		.=				\neg		WELL DEVELOPMENT BACK	FILLQ	UICK GROUT
	DATE							-		\neg		FIELD PARTY MCR-REB RI	G _	BK-81
- 1	DAIL					L						T		
	SAMPLE NUMBER	AMPLE	DE	/PLE PTH	PENET	DARD RATION	무성되	RQD	DEPTH (N	GRAPH LOG	υ	SOIL / ROCK	WELL	DRILLER'S
	E I	SAM	IN F	EET			CHO CHO CHO CHO CHO CHO CHO CHO CHO CHO	%	FEET	GR T	S	IDENTIFICATION	3	NOTES
			FROM	TO	BLOV	VS / 6"	- A - A - A		1001	 ├─ <u></u> ──		NO SAMPLE TAKEN BORING LOCATED IN		Boring grouted from
	1		0.0				0					ROAD CUTTINGS INDICATE BROWN SAND		grade to 48.1 w\ 60
									-	.	SP	AND GRAVEL		gallons of quick
	2	SS	3.0	4.5	12-1	9-24	1.1				55	DAHK BROWN GHAVELLY SAND WORK,	1	grout.
	3	SS	5.0	6.5	14-1	7-19	1.2		5 -]		rounded, quartz, with fines, 3/4" max size.		
										 				
	4	ss	8.5	10.0	17-2	21-25	1.1		-] '	}			
	_	-		 					10 -	:				
	5	ss	11.6	13.1	19-2	25-28	1.1							
								, i		1				
				ļ					15 -	-				
					46.4]:				
٠,	6	SS	16.6	18.1	12-1	9-25	1.2		-		İ			
Ì				_					20 -]				
ŧ							. !		20	-				
	7	SS	21.6	23.1	5-1	4-21	1.1]				
					·	•				┨ ・				
				 					25 -]				
	8	SS	26.6	28.1	11-1	17-28	1.2			┤ .	1			ļ
]				
		-		-					30 -	-	ŀ			
	9	ss	31.6	33.1	R.C	9-10	1.1]	CL	BROWN SILTY CLAY Moist, with fine grin sand		
			01.0	00.1		, 10				 		lens, low plasticity.		
				<u> </u>			ļ	ļ	35 -	1	1			
					}							V 5		1
	10	ST	36.6	38.6			1.6]	SP	time 5 sec. Push 2.0		
									40 -			PSI 700		
									40 -]		LIGHT BROWN SAND Fine grain.		
	11	SS	41.6	43.1	4-	5-6	1.1	İ	Ì	1	1	BROWN SAND Moist, 100% fine grain, with		
							1		į	-		fines.	ļ	
				+	-		+		45 -	վ։				
	12	ss	46.6	48.1	6-	6-5	?		İ]	1			
	, <u> </u>]	+	-			
		<u> </u>	<u> </u>	<u></u>			<u> </u>	L.,	L	_l	1		L	
٠,						USE) 			- <u>-</u> -				DEN TUDE
;	X	-		ROCK					PIEZON	NETER	R TY	PE: PT = OPEN TUBE POROUS TIP, SS SCREEN, G = GEONOR, P = PNEUMATIC	= Ut	CIN TUBE
f	-			.25 HS .25 HS				\dashv	SL	UHI				SCOMON
		\perp			ADVA	NCER	4"		WELL T	YPE:		OW = OPEN TUBE SLOTTED SCREEN, GM	1 = 0	SEUMUN
		1		ASING			3"					neconnen PER		

	JOB	NUN	IBER _	3966			_			,			
	CON	IPAN	Y <u>AF</u>	PALA	CHIAN POW	ER CC	MP/	<u>AN</u> Y			BORING NO. <u>96-104</u> DATE S	HEET	1OF2_
	PRO	JEC	Spe	orn fly	ash pond di	<u>kes</u>					BORING START <u>06/04/96</u> BORING FINISH	1 <u>0</u>	6/04/96
r	coc	RDI	NATES .	N 719	9,229.2 E 1	734,60	00.2				PIEZOMETER TYPE SS WELL TY	PE _	
,	GRO	UND	ELEVA	TION	618.7	SYSTEM		TATE P	LAN	E	HGT. RISER ABOVE GROUND	DIA	
				⊻	¥		<u>v</u>				DEPTH TO TOP OF WELL SCREEN	ттом	33.1
			CVCL	₹			一			,	WELL DEVELOPMENT NO BACK	(FILL C	NUICK GROUT
	TIME						+				FIELD PARTY MCR-REB		
	DATE	<u> </u>				·					33,55		
	SAMPLE NUMBER	SAMPLE	DE IN I	MPLE PTH EET	STANDARD PENETRATION RESISTANCE	TOTAL ENGTI	RQD %	DEPTH IN FEET	GRAPH	8080	SOIL / ROCK IDENTIFICATION	WELL	DRILLER'S NOTES
	1	SS	FROM 0.0	TO	BLOWS / 6" 2-4-8	1.1			 	CL	_	 	· · · · · · · · · · · · · · · · · · ·
	'	55	0.0		2-4-8	1.1			<u>[</u>		•	88	
	2	SS	3.0	4.5	9-14-18	1.2		5 -		SP	DARK BROWN CLAY Moist, medium to high		
	3	SS	5.0	6.5	73	1.1		•	100	GW	BROWN GRAVELLY SAND Dry, quartz, 1/2"		
									80	1	max, rounded.		
	4	SS	8.5	10.0	9-18-25	1.2		10	0		DARK BROWN SAND AND GRAVEL Dry,		
								10 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	}	quartz, 1/2" max, rounded. Same as above some fines, moist		
	5	SS	11.7	13.2	19-26-31	1.2				SP	DARK BROWN GRAVELLY SAND Dry, 3/4"		
							- 1]		max, rounded, quartz.		
						1 1		15 -] :			00	
	6	SS	16.7	18.2	18-21-26	1.2			77	SC	DARK BROWN CLAYEY SAND Moist, trace of	1919	
ì										1	gravel.	1919	
, '		-						20 -			·	0	
	_	00						-		SP	LIGHT BROWN GRAVELLY SAND Dry, quartz,		20.4 Top seal.
	7	SS	21.7	23.2	17-21-25	1.2				55	3/4" max, rounded.		22.5 Top of sand.
								25 -	1: ::			: ::	24.1 Top of screen.
							-					[:[]:	
	8	SS	26.7	28.2	4-6-8	1.1				CL	<u>UGHT BROWN SILTY CLAY</u> Moist, low to medium plasticity.		
			-					-		-	medium plasticity.		
								30 -				[:目:	
	9	ST	31.7	33.7		1.6		-	-	1	PUSH 2.0		
								-	<u> </u>		PSI 900 TIME 6 SEC.		33.1 Bottom of
						+		35 -			BROWN CLAYEY SAND Fine grain?		screen. 34,7 Bottom of sand.
	10	SS	36.7	38.2	3-3-5	1.2				1	LIGHT BROWN SILTY CLAY Moist, low to		O 1.7 Bottom or curtar
		00	00.7	00.2	000	-		` '	<u> </u>		medium plasticity.		
								40 -		1			
]	THE PROPERTY OF THE CAME AND A STATE OF THE CAME AND A		
	11	SS	41.7	43.2	4-4-7	1.1			111	SM	LIGHT BROWN SILTY SAND Moist. v-fine grain 100%.		
								45 -	111	1	100.01		
į								45					
	12	ST	46.7	48.7		1.5				-	PUSH 2.0		
	- :									┼	<u>PSI 1200</u> TIME 6 SEC.	(XXXX	i
. 1			TYPE	OF C	ASING USE	 D	$\neg \neg$	<u> </u>	1	1	Continued Next Page	J	<u> </u>
i	Х	Ι	NQ-2	ROCK	CORE .			PIEZOM	ETER	7 TYP	E: PT = OPEN TUBE POROUS TIP, SS	= OP	EN TUBE
•			6" x 3.	25 HS/	4						CREEN, G = GEONOR, P = PNEUMATIC		
j				25 HS/		411		WELL T	VDE.	0	W = OPEN TUBE SLOTTED SCREEN, GA	1 = G	EOMON
				<u>ASING</u> ASING	ADVANCER	4"		VYELL I	1112		DED	u	
				101110		•					DECOMBRED DED		

			BER <u>3966</u> / Appala	CHIAN POWER	 COMP	ANY	LO		BORING NO. <u>96-104</u> DATE SHEET <u>2</u> OF <u>2</u>
				ash pond dikes				1	BORING START 06/04/96 BORING FINISH 06/04/96
1	SAMPLE NUMBER	SAMPLE	SAMPLE DEPTH IN FEET FROM TO	STANDARD PENETRATION RESISTANCE BLOWS / 6"	RQD HUD SOO WUD WUD WUD WUD WUD WUD WUD WUD WUD WUD	DEPTH IN FEET	GRAPH LOG	8080	SOIL / ROCK
			TROM	BLOWOYO					DARK BROWN SANDY CLAY Fine grain.
9									

JC)B N	IUM	IBER _	3966					LC)G C	OF BORING		
					CHIAN POWE	RCC	_ <u>)MP/</u>	<u> M</u> Y			BORING NO. <u>96-105</u> DATE	HEET	_1_ OF1_
\ PI	ROJI	ECI	Spe	orn fly	ash pond dik	es					BORING START <u>06/03/96</u> BORING FINIS	н <u>о</u>	6/03/96
C	OOF	A)OS	NATES .	N 71	8,782.8 E 1,7	35,0	84.7				PIEZOMETER TYPE WELL TY	PE _	
G	ROU	IND	ELEVA [*]	TION	619.3 SY	STEM	. <u>. \$1</u>	ATE P	LAN	E	HGT. RISER ABOVE GROUND	DIA	
W	ATE	RL	EVEL	<u>Ā</u>	Ţ		¥				DEPTH TO TOP OF WELL SCREEN BC	TTOM	
TI	ME			. 						•	WELL DEVELOPMENT BACI	(FILL C	QUICK GROUT
D/	ATE.										FIELD PARTY MCR-REB	≀IG _	BK-81
<u> </u>						1 5.	 		' '		T	т—	
ᄪ	ш	田		NPLE PTH	STANDARD PENETRATION	FH FR Y	RQD	DEPTH	μ,,,	ν υ	SOIL / ROCK		DRILLER'S
	뙨	SAMP		EET	RESISTANCE	TOT/ ENG	%	IN	LOG	n	IDENTIFICATION	MELL	NOTES
Ö	ž	ช	FROM	то	BLOWS / 6"	REL		FEET	Ø	Э		-	
-											No sample taken. Boring located in road bed.		Boring grouted from
1						:					Auger cuttings sand and gravel.	,	grade to 48.5' with 75 gallons of quick
1	1 1	SS	3.0	4.5	7-10-11	1.1			. :	sw			grout
1	2 1	SS	5.0	6.5	12-16-21	1.2		5 -		1	of gravel. BROWN GRAVELLY SAND Dry quartz,		
				!		}	1	-	-::::		rounded, 1/2" max size.		
	,	ss	8.5	10.0	9-15-17	1.2					3/4" max size trace of fines.		
\vdash	+				· · · · · · · · · · · · · · · · · · ·			10 -	<u> </u> ::::			,	
4	: :	ss	11.5	13.0	9-16-19	1.1			}::::				
									∤ ∷∷				
-	-		<u></u>			-		15 -	∤∷∷				
١,	, ,	ss	16.5	18.0	9-14-17	1.2			 ::::	1	Moist		
\l	1								 ::::				
-	+							20 -		1			
1	,	ss	21.5	23.0	7-9-14	1.1		-		SM	DARK BROWN SILTY SAND Moist, with trace of	1	
				20.0				-]		small gravel.		
\vdash	+							25 -	$\left\{ \left\{ \right\} \right\}$				
,	, ,	ss	26.5	28.0	5-6-7	1.2			닏	ČL	BROWN SILTY CLAY Moist, low to medium		
											plasticity.		
-	+							30 -	=				
۱,	, ,	зт	31.5	33.5	•	1.7			ļ-:		PUSH 2.0		
`		_	01.0	00.0		'					PSI 700		
\vdash	\perp	_						35 -	}		TIME 8 SEC.		
9	١,	ss	36.5	38.0	3-3-5	1.1		-	<u> </u>				
"	' `	"	30.3	36.0	3-3-3	' '			 				
<u> </u>	\perp							40 -		1			
1.	۱,										A LOUST DEPONANT OF AVERY CAMID Model 4000	-	
"	0 8	SS	41.5	43.0	4-4-5	1.2			11/	SP	LIGHT BROWN CLAYEY SAND Moist, 100% v-fine grain.		
L	\perp		_					45 -				1	
١.		_						40	1/	1			
1	1 5	ST	46.5	48.0		1.8			1/	1	TIME 5 SEC PSI 800]	
	l										PUSH 2.0	<u> </u>	
-			TYPE	OF C	ASING USED						•		
	K			ROCK				PIEZOM	ETER	RTYP	E: PT = OPEN TUBE POROUS TIP, SS	= OP	EN TUBE
-	\dashv			25 HSA				SLO	OTTE	ED S	CREEN, $G = GEONOR$, $P = PNEUMATION$;	
\vdash	+			<u>25 HS/</u> ASING	ADVANCER	4"	\dashv	WELL T	YPE:	O'	W = OPEN TUBE SLOTTED SCREEN, GM	1 = G	EOMON
	7			ASING		3"					DECOURS DED		

	(OB	NII IR <i>a</i>	BER _	2066					LO	G O	F BORING		
					CHIAN POW	R CO	MPA	NY		E	BORING NO. <u>96-106</u> DATE	SHEET	_1_ OF2
٠.,					ash pond dik						BORING START 05/28/96 BORING FIN		
٠ ۲			-	-	,271.8 E 1,					F	PIEZOMETER TYPE WELL	TYPE _	
,					518.9 S				L <u>an</u> i		HGT. RISER ABOVE GROUND	DIA	
				<u> </u>			¥				DEPTH TO TOP OF WELL SCREEN		
	TIME			<u> </u>). <u>C</u>		- =				WELL DEVELOPMENT BA		
	DATE			5-25	3-96		+		\dashv		FIELD PARTY MCR-REB		
					, , , , , , , , , , , , , , , , , , , ,	1 1	. I 						
	ш к	щ		MPLE PTH	STANDARD PENETRATION	네무다	RQD	DEPTH	I .	S	SOIL / ROCK	1	DRILLER'S
	SAMPLE NUMBER	G.		EET	RESISTANCE	' CO>	%	IN	RAP	S	IDENTIFICATION	直	NOTES
	άź	ż	FROM	то	BLOWS / 6"	FILE	~	FEET	O	כ			
									- 1		NO SAMPLE TAKEN BORING IN ROAD BED.		
						1	ł	-			DADIC DECIMAL CAND AND COME Moiet 1/5)···	
	1	SS	3.0	4.5	15-17-21	1.1		5 -		GP	DARK BROWN SAND AND GRAVEL Moist, 1/2 max, rounded, quartz, some fines.		}
	2	SS	5.0	6.5	17-24-30	1.1		3	5 :	{	1" max size		
												1	1
	3	SS	8.5	10.0	13-17-20	1.2		10 -	* :	{ .	1/2" max size		
								10	•				
	4	SS	11.5	13.0	11-11-14	1.2				{			
								15 -					
						1		13		}	4.00		
٠.,	5	SS	16.5	18.0	13-15-17	1.1					1/2" max size		
								20 -	•	1			
/								20	77	100	BROWN SANDY CLAY Dry, slight to low	_	
	6	SS	21.5	23.0	6-8-10	1.2				sc	plasticity.		
						1		25 -					
	7	SS	26.5	28.0	4-6-6	1.2			1/4	 	GRAY FLY ASH Dry.		
	'	00	20.5	20.0	4-0-0	'] *	•	Sign Farmers 2.7.		
						1 1		30 -	}	5			
	ا ا	99	31.5	33.0	1-1-1	1.2			<u></u> *~*	!			
	ľ	33	31.5	33.0		```			} ≎	*	Saturated		
			-		<u> </u>			35 -	}	ř			
	9	SS	36.5	38.0	1-1-1	1.2			→ * *				
] \$\frac{\chi}{2}				
				ļ	!			40 -	-{`⇔`,				
	10	SS	41.5	43.0	1-1-1	1.2			[\$]				
	"		11.0	10.0					_{\&,`	s)			
	-	-		 				45 -	_ (×			
	11	ss	46.5	48.0	3-2-2	1.1			₩				
		}							- - - - - - - - - - - - - - - - - - -	×			
		L	TVD		ACING UCE		Ц Т	L	\\$		Continued Next Page		
•	-	r			CORE							20 - 0	DEN TIBE
,	X	+-	6" x 3	25 HS	CORE			PIEZON SL	OTT	R TYF ED S	PE: PT = OPEN TUBE POROUS TIP, S CREEN, G = GEONOR, P = PNEUMA	JU = U TIC	1 -14 100-
			9" x 6	.25 HS	Α			WELL T			W = OPEN TUBE SLOTTED SCREEN,		GEOMON
	-	+-		ASING	<u>ADVANCER</u> i	<u>4"</u> 3"		VVELL I	1176	\dashv	DECORDER RER		
					<u> </u>	_ <u> </u>					DECUBBED HER		

DECORDED PFR

LOG OF BORING

JOB NUMBER 3966 COMPANY APPALACHIAN POWER COMPANY BORING NO. <u>96-106</u> DATE_____ SHEET <u>2</u> OF ___ PROJECT Sporn fly ash pond dikes BORING START <u>05/28/96</u> BORING FINISH <u>05/28/96</u> TOTAL LENGTH RECOVERY SAMPLE **STANDARD** SAMPLE NUMBER RQD SAMPLE DEPTH | DEPTH PENETRATION GRAP1 LOG SOIL / ROCK WELL ပ DRILLER'S IN IN FEET RESISTANCE Ø % IDENTIFICATION NOTES FEET FROM TO BLOWS / 6" \supset ø 12 SS 51.5 53.0 2.2.2 1.2 ¢ ¢ 55 ₩ 13 SS 56.5 58.0 3-4-4 1.2 CL DARK GRAY SILTY CLAY Wet, low to medium plasticity, trace of organic material. 60 岙 ST 14 61.5 63.5 1.6 Time 7 sec. Push 2.0 P\$1600 65 BROWN SILTY CLAY Trace of fine sand. 15 SS 66.5 68.0 3-4-5 1.2 BROWN CLAY Wet, medium to high plasticity. Boring grouted from 68.0' to grade with 125 gallons quick grout.

	(OD	. 11 16.4	BER	2066				LU	JG C	of Boring			ı
					CHIAN POW	ER COM	PANY			BORING NO. 96-107 DATE	SHEET	1 OF 2	_
					ash pond di					BORING START 05/29/96 BORING FINIS			
					,691.4 E 1					PIEZOMETER TYPE WELL TY			
					318.8					HGT. RISER ABOVE GROUND			
).1 ¥		∑			DEPTH TO TOP OF WELL SCREEN BO	MOTTC		
	TIME			= 30	/·! =		Ξ			WELL DEVELOPMENTBAC	KFILL	UICK GROUT	
	DATE			5-20	9-96			$\neg \neg$		FIELD PARTY MCR-REB	RIG _	BK-81	_
	DATE			J-23	7-30						_		_
	щœ	щ	SAM	i	STANDARD		DEPTH	ı x	O	COIL A BOOK		DRILLER'S	
	MBE	AMPL		PTH EET	PENETRATIO RESISTANCE		, IN	LOG	S	SOIL / ROCK IDENTIFICATION	WELL	NOTES	
	SAMPLE NUMBER	SAI	FROM		BLOWS / 6"	P 4 FeB	% FEET	6	5	DENTIFICATION	3	NOILS	١
			PHOIN	-10	BLOWS / 0			1	 	NO SAMPLE TAKEN BORING IN ROAD BED,	1	Boring was grouted	
		ļ				1 1		-		AUGER CUTTINGS INDICATE BROWN SAND		from 73.1 to grade w/approximately	
	1	ss	3.0	4.5	14-17-21	1.1			GP	AND GRAVEL BROWN SAND AND GRAVEL Moist, quartz,	7	100 gallons	İ
- 1	2	ss	5.0	6.5	17-21-28	1,2	— 5 -			rounded, some fine 3/4' max size		of quick grout.	
i	-	00	5.0	0.0	17-21-20	1.2			{				
i		_						—		1/2" max size			
	3	SS	8.5	10.0	14-18-24	1.1	<u> </u>		1	1/2 max size			
								—	}				1
	4	SS	11.6	13.1	13-16-21	1.2			}				
	,						15	1					
							13	<u> </u>	}		_		
	5	SS	16.6	18.1	5-8-10	1.1			ML	BROWN SILT Moist, non to v-slight plasticity.			
ļ							00						
.*							20 -	-					
	6	SS	21.6	23.1	8-8-11	1.2		_	SM				
								11.	-	BROWN SILT SAND Moist, 100% v-fine grain.			
							25	111	i		1		
	7	SS	26.6	28.1	4-5-9	1.2		- 	1	GRAY FLY ASH Moist.			
							ļ	* *					
							30 -	ૺૺૺૺૺ૾ૢૹ૽૽	*				
	8	SS	31.6	33.1	5-8-11	1.2		}	1	Saturated			
							-	* *	*	<u>.</u> .	1		
							35	┤ंंं	۲	1			
	9	ss	36.6	38.1	1-1-1	1,1		†	X.	ļ			
	9	33	30.0	30.1	1-1-1			→ *	X		豆	,	
							40	–} &*	×		=		
									×		1		
	10	SS	41.6	43.1	1-1-1	1.2	[}	×				
	l						45	_ 	۶				
							13	- ↓ <	Þ				
	11	SS	46.6	48.1	1-1-1	1.2		→	*	·	1		
								_}	⊅ _				
			TYPE	OF	ASING USE	 ED				Continued Next Page			
•.	X	η-			CORE		DIEZO	METE	D T\/		S = OF	PEN TUBE	
,	_	+-	6" x 3.				PIEZOI	METE LOTT	ED S	SCREEN, G = GEONOR, P = PNEUMATI	C 01	,,-3-	
		Ţ	9" x 6.	25 HS	Α		ļ			DW = OPEN TUBE SLOTTED SCREEN, G		SEOMON	
	-	-	HW C		ADVANCE	3 4" 3"	WELL 1	TYPE:					
	1		INVV U	ハンロソじ		J	1			procedure DED			

LOG OF BORING JOB NUMBER 3966 COMPANY APPALACHIAN POWER COMPANY BORING NO. <u>96-107</u> DATE_____ SHEET <u>2</u> OF ___ PROJECT Sporn fly ash pond dikes BORING START <u>05/29/96</u> BORING FINISH <u>05/29/96</u> STANDARD
PENETRATION A LUB
RESISTANCE
BLOWS / 6" RQD SAMPLE NUMBER SAMPLE Ø DEPTH SAMPLE GRAPH LOG WELL DRILLER'S SOIL / ROCK DEPTH O IN IN FEET Ø **NOTES** % IDENTIFICATION FEET \supset **FROM** TO φ 12 SS 51.6 53.1 2-1-1 1.2 ₩ 55 Weight of 140# SS 56.6 13 58.1 0 1.3 hammer. 60 DARK BROWN CLAY Moist. medium to high 14 SS 61.6 63.1 4-7-10 1.2 plasticity. 65 Push 2.0 15 ST 66.6 68.6 1.5 Time 5 sec. PSI 600 70 **BROWN CLAY** 16 SS 71.6 4-6-7 1.2 73.1

	-		BER _								CUETT 1 OF	2
					CHIAN POW						ORING NO. 96-108 DATE SHEET 1 OF	
					ash pond dil						ORING START <u>06/11/96</u> BORING FINISH <u>06/11/96</u>	
					,761.8 E 1,						MELL TYPE	
	GRO	UND	ELEVAT	TON	303.4 S	YSTEM _	ST	ATE PL	ANE		IGT. RISER ABOVE GROUND DIA	
	WATI	ER LE	VEL	<u> </u>	Ţ		<u>¥</u>				EPTH TO TOP OF WELL SCREEN 63.3 BOTTOM 72.3	
1	TIME										VELL DEVELOPMENT NO BACKFILLQUICK GROU	<u> </u>
	DATE	:								F	IELD PARTY MCR-WEB RIG BK-81	
ĺ					OTANDADD	> -	200		T	Ø		
	SAMPLE	PLE		1PLE PTH	STANDARD PENETRATION		RQD	DEPTH	E 0	U	SOIL / ROCK J DRILLER'	s
	토미	AMP		EET	RESISTANCE	II 1	%	IN	GRAPI LOG	Ø	IDENTIFICATION H NOTES	
	SZ	S	FROM	то	BLOWS / 6"	RLT	~	FEET	ا	<u>ה</u>		
											No sample road base	
	ł	İ				1 1		•				
	1	ss	3.0	4.5	11-15-16	1.2			4 4		BLACK SAND AND BOTTOM ASH Moist.	
	3	ss	5.0	6.5	12-17-21	1.5	\neg	5 -	10 0			
				}					i i			
	4	ss	8.5	10.0	12-16-29	.9		;	17/	SC	DARK BROWN CLAYEY SAND Moist, with fine	
	7	33		10.0	12 10 25	++		10 -			sand lens.	
	5	ss	11.6	13.1	9-18-22	1.2	Í		72	SP	DARK BROWN GRAVELLY SAND Moist,	ļ
	١			10.1	0 .0 ==				_		quartz, some fine, 1/2" max size.	
			1	ļ		+-+		15 -	-			
			400	101	40.04.04	.8			77	SC	DARK BROWN CLAYEY SAND Moist, trace of	
	6	SS	16.6	18.1	18-24-21	.0					small gravel and ash.	
Ì								20 -				
								20	-22		LIGHT BROWN SILTY CLAY Moist, low	
	7	SS	21.6	23.1	6-6-8	1.5			1-	CL	plasticity.	
l								25 -]			
								23]		
	8	SS	26.6	28.1	4-4-4	1.0			10 2	1	BLACK BOTTOM ASH Saturated.	
									10.0			
				<u> </u>		1		30 -				
	9	SS	31.6	33.1	2-1-2	1.1			\$		GRAY FLY ASH Saturated.	
									→ ⋄			
				<u> </u>				35 -	_f & ?			
	10	SS	36.6	38.1	2-1-1	1.5			-	1		
								l	∄ &°			
				ļ <u>.</u>		+-+		40 -	┤ѽ	1		
	11	ss	41.6	43.1	3-5-7	.8			1	CL	LIGHT GRAY CLAY Moist to wet, medium to	
	''	33	41.0	43.1	3-3-7				1=	-	high plasticity.	
	<u></u>			ļ	ļ <u> </u>			45	1=	1		
									巨	1	PUSH 2.0	
	12	ST	46 6	48.6	ł i	2.0				-	TIME 7 SEC.	
			1						丰	1	PSI 1000	
		•	TYP	E OF (CASING USE	D	ļ				Continued Next Page	
٠,	X	$\overline{}$			CORE			PIEZOI	METE	R TYP	PE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE	
, e		1		.25 HS				SŁ	OTT	ED S	CREEN, G = GEONOR, P = PNEUMATIC	
		_	9" x 6	.25 HS	A			WELL.			W = OPEN TUBE SLOTTED SCREEN, GM = GEOMON	
		-	HW C	CASING CASING	ADVANCE	₹ 4" 3"		VVCL-L	1156	$\overline{}$		
	⊢—	+-	TAAA	NUCLIAC	<u> </u>						RECORDER REB	

JOB NUMBER 3966 BORING NO. <u>96-108</u> DATE SHEET <u>2</u> OF <u>2</u> COMPANY APPALACHIAN POWER COMPANY BORING START <u>06/11/96</u> BORING FINISH <u>06/11/96</u> PROJECT Sporn fly ash pond dikes PENETRATION RESISTANCE BLOWS / 6" SAMPLE RQD SAMPLE NUMBER DEPTH SAMPLE GRAPH DRILLER'S WELL SOIL / ROCK DEPTH T 06 O IN IN FEET NOTES % Ø IDENTIFICATION FEET כ FROM TO DARK GRAY SILTY CLAY Wet, low plasticity, CL 51.6 2-2-3 ? 13 SS 53.1 trace of organic and sand. 55 2-2-3 1.5 14 SS 56.6 58.1 57.0 Top of seal. 60 60.6 Top of sand. SS 3-4-5 1.5 15 61.6 63.1 63.3 Top screen. 65 1.5 SS 4-4-5 66.6 68.1 16 70 SS 71.6 73.1 4-5-6 1.5 72.3 Bottom of screen. 74.0 Bottom of sand.

	JOB	NUM	IBER _	3966				-		LO		or boning				
						POWE						BORING NO. 96-109 DATE				
٠.,			•									BORING START <u>05/29/96</u> BORING				
												PIEZOMETER TYPE WI				
	GRO	UND	ELEVA1	TION	619.6	SY	STEM		ATE P	LAN		HGT. RISER ABOVE GROUND				
	WAT	ER L	EVEL.	<u>¥</u> 20).5	<u>¥</u>		<u>¥</u>				DEPTH TO TOP OF WELL SCREEN				
	TIME											WELL DEVELOPMENT				<u>] </u>
	DATE	=		5-30	0-96	<u> </u>		_ _]		FIELD PARTY MCR-REB	RIC	G	BK-81	
	SAMPLÊ NUMBER	SAMPLE	DE	APLE PTH EET	PENET RESIS	IDARD RATION TANCE VS / 6"		RQD %	DEPTH IN FEET	GRAPH	0 U	SOIL / ROCK IDENTIFICATION		WELL	DRILLER' NOTES	
	1	SS	3.0	4.5		9-24	1.2				GP	NO SAMPLE TAKEN BORING LOCATED II ROAD BASE, AUGER CUTTINGS INDICATE BROWN SAND AND GRAVEL DARK BROWN SAND AND GRAVEL Moist,	E		Boring grouted 73.2 to grade v 150 gallons qu grout.	with
	2	SS	5.0	6.5	15-1	8-21	1.1		5 -	•		max size, quartz, rounded, some fines.	·			
	3	SS	8.5	10.0		18-21	1.2									
	4	ss	11.7	13.2	12-1	3-14	1.0		10 -		SP	DARK BROWN SAND Moist, fine grain.		·		
	5	SS	16.7	18.2	4-	5-6	1.1		15 -		ML	BROWN SANDY SILT Moist, non plasticity	,			
•	_						4.0		20 -					⊈		
	6	SS	21.7	23.2	. 4-	6-8	1.2		25 -					-		
	7	ST	26.7	28.7			1.5		30 -	* *		Time 10 sec PSI 1200 Push 2.0				
		\$5 `S T.	31.7	33.2	4-7	/-10	1.1		35 -	-		By watching rig psi possible .4 to .5 of fly in bottom of tube, GRAY FLY ASH Moist.	asn			
	9	SS	36.7	38.2	1-	.1-1	1.2			*	*	<u>Saturated</u>				
	10	SS	41.7	43.2	1-	1-1	1.2	·	40 -	* * * * * * * * * * * * * * * * * * *	×					
	11	SS	46.7	48.2	1-	-1-3	?		45 -	* * * * * * * * * * * * * * * * * * *	× ×		-			
	Г		TYPE	E OF C	ASING	USEL)				•	Continued Next Page				
	X	T			CORE				PIEZON	VETE	R TVI		P, SS =	= OF	PEN TUBE	
J.			6" x 3.	25 HS	A				SL	OTTI	ED S	SCREEN, G = GEONOR, P = PNEUI	MATIC			
	<u> </u>	-		25 HS	A i ADVA	NCEP	4"		WELL T	YPE:	O	W = OPEN TUBE SLOTTED SCREE	N, GM	l = G	GEOMON	
		+		<u>ASING</u> ASING		NOER	3"		*******			RECORDER REB				
		1									1	KEOOKUEK <u>N</u> ED				

JOB NUMBER 3966 COMPANY APPALACHIAN POWER COMPANY BORING NO. <u>96-109</u> DATE_____ SHEET <u>2</u> OF ___ BORING START <u>05/29/96</u> BORING FINISH <u>05/30/96</u> PROJECT Sporn fly ash pond dikes SAMPLE **STANDARD** RQD SAMPLE NUMBER Ø DEPTH SAMPLE GRAPH LOG PENETRATION HELL DEPTH SOIL / ROCK DRILLER'S O IN RESISTANCE IN FEET Ø IDENTIFICATION NOTES % FEET BLOWS / 6" FROM TO φ • φ • , SS 1-1-2 1.2 12 51.7 66.7 **\$** 55 SS 56.7 58.2 ٥ 13 1-1-4 1.2 ¢. 60 ¢ 14 SS 61.7 63.2 4-6-8 ? DARK BROWN CLAY Moist, medium to high plasticity. 65 15 ST 66.7 68.7 1.7 Time 8 sec. Push 2.0 PSI_1000 70 Material same as sample no. 14 16 SS 71.7 73.2 3-4-5 1.2

			BER					-					•
					CHIAN							BORING NO. <u>96-110</u> DATE SHEET1 OF2	
					ash po							BORING START <u>06/06/96</u> BORING FINISH <u>06/10/96</u>	
; I	coo	RDIN	iatęs _	N 720	,277.1	E 1,7	<u>35,66</u>	5.6				PIEZOMETER TYPE SS WELL TYPE	_
	GRO	UND	ELEVAT	ION	<u>802.3</u>	_ SY	STEM	ST	ATE P	<u>AN</u> E		HGT. RISER ABOVE GROUND DIA	_
ſ	WATE	ER LI	EVEL	¥ DF	RY	<u>¥</u>	•	V				DEPTH TO TOP OF WELL SCREEN 43.7 BOTTOM 52.7	_
Ì	TIME				-							WELL DEVELOPMENT NO BACKFILLQUICK GROUT	_
- 1	DATE			6-10)-96	-		1			+	FIELD PARTY MCR-REB RIG BK-81	_
1							1						٦
	ᄣᄣ	PLE		IPLE	STAN			RQD	DEPTH	x _	Ø	SOIL / ROCK - DRILLER'S	-
	SAMPLE	AMPL		PTH EET	BESIS.	RATION TANCE	COU!	۰,	IN	RAPH	S	SOIL / ROCK 그 DRILLER'S IDENTIFICATION 및 NOTES	
	S Z	SA	FROM		BLOW			%	FEET	ω	ב	IDENTIFICATION 2	
	\dashv		1110101		BLOT	1070						No sample taken, boring in road, Grouted grade to	٦
										┪┎		73.1' with approximately 80	
	1	SS	3.0	4.5	13-1	8-24	1.1			4 2		DARK GRAY BOTTOM ASH Dry gallons.	
	2	SS	5.0	6.5	10-1	1-14	1.2		5 -	IS L			
	-	30	5.0	0.5	10-1	1-1-1	''-		,	10 1			
ļ	l					,	1			44	-00	DARK BROWN SAND AND GRAVEL Dry,	Ì
	3	SS	8.5	10.0	5-7	7-9	1.1		10 -	1.1	GP	quartz, rounded, 3/4" max.	
	l										}		
	4	SS	11.6	13.1	6-7	-10	1.1			-[
ļ	-								45		}	·	
									15 -] · <u>•</u>			
	5	SS	16.6	18.1	8-10	0-10	1.2			F	CL		
	6	SS	18.6	20.1	9-1	1-12	1.2			-77	sc	with trace of v-fine sand. Attempted to push tube lifted drill, destroyed	
	_								20 -		1	end of tube.	-
	7	SS	21.6	23.1	5-7	'-11	1.2			1//	1	BROWN SANDY CLAY Moist, low to medium plasticity with v-fine grain sand lens.	1
	ĺ		23.6				-			1//		Grading to more sand	
			20.0				-		25 -	1//	1	Attempted to push tube, top hole broken in	
	9	SS	26.6	28.1	5-7	7-11 ·	1.2			¥//	1	tube, pushed approximately 1' lifted rig, GRAYISH BROWN SILTY CLAY Moist, low to	ļ
										1//	1	medium plasticity.	
ļ					ļ				30 -	- (//		Could not move or knock tube off to the side	
		SS	24.0	22.1	7.	0-9	1.3			14	CL	of lead auger, pulled augers grouted hole	
i	10	55	31.6	33 1	,-,	0-9	1.3			+=] "	moved approximately three feet down stream to start new hole. No spt taken on new hole	
									35 -	1	1	untill this point. SWL dry augers to 26.6'. Auger	
i										+=-	1	set all weekend at this point.	
ļ	11	SS	36.6	38.1			1.5		İ	1	CL	REDDISH BROWN CLAY Dry to moist, medium to high plasticity.	
	12	ST	38.6	40.6			2.0		40 -	=	· ·	MEDIUM GRAY CLAY Moist to dry, medium to 39.1 Top of seal.	
									40	}	1	high plasticity, with odor of organic	
	13	SS	41.6	43.1	3.	5-7	1.5			丰		PSI 1200 : 41.7 Top of sand.	
											1	TIME 6 SEC. 43.7 Top of screen	i-
				<u> </u>			 		45 -		-	Top DARK BROWNISH GRAY SANDY CLAY	
	14	SS	46.6	48.1	3-	4-4	1.5			<u> </u>		Bottom BROWN SANDY CLAY DARK GRAY CLAY Moist to wet, medium to	
								-		上	-	high plasticity, strong odor of organic.	
			L	L	İ		J	Ц.,	L	_i	1		_
			TYP	E OF C	CASING	USEC)	أ				Continued Next Page	
j	Х				CORE				PIEZO	WETE	RTY	PE: PT = OPEN TUBE POROUS TIP, SS = OPEN TUBE	
•		┼		25 HS					SL	TTO.		SCREEN, G = GEONOR, P = PNEUMATIC	
		+		.25 HS. ASING	a ADVA	NCER	4"		WELL 7	TYPE:	C	DW = OPEN TUBE SLOTTED SCREEN, GM = GEOMON	
			NW C	ASING	i		3"					RECORDER REB	

LOG OF BORING JOB NUMBER 3966 COMPANY _ APPALACHIAN POWER COMPANY BORING NO. <u>96-110</u> DATE_____ SHEET <u>2</u> OF PROJECT Sporn fly ash pond dikes BORING START <u>06/06/96</u> BORING FINISH <u>06/10/96</u> STANDARD
PENETRATION
RESISTANCE
BLOWS / 6"
RQD
RQD
WWW. SAMPLE SAMPLE NUMBER DEPTH SAMPLE GRAPH LOG DEPTH SOIL / ROCK WELL DRILLER'S ပ IN IN FEET Ø **IDENTIFICATION** NOTES **FEET** FROM TO GRAY BROWN CLAY Moist to wet, medium to high plasticity, odor of organic with v-fine grain 15 SS 51.6 53.1 3-3-5 1.5 sand lens, water on out side of spoon. 52.7 Bottom of screen. 55 53.3 Bottom of sand. 16 SS 56.6 58.1 3-4-4 1.5 ST PUSH 2.0 17 58.6 60.6 2.0 60 TIME 7 SEC. PSI 770 18 SS 61.6 63.1 10 ? DARK GRAY SILTY CLAY DARK GRAY CLAY Moist to wet, medium to high plasticity, strong odor of organic material. 65 19 SS 66.6 68.1 3-4-5 1.5 70 SS 71.6 20 73.1 4-7-11 1.4

	5004	01.	· Tau		•	A.		Date:					 -			
ct:	. spon	W /- 1Au	J. A	54 D	y)Ce	· · · · · · · · · · · · · · · · · · ·		Test N	lo.:	961	101	DO	CR.			
rocked by	· Couch	. N . W			- ,	· 										
restett by	· Pous A	ISINIVE	<u> </u>	Rema	rks:											
	oude.	n/sec or no m								•		·				";
Run te	st every 20	cm or approx	c. 8 inches	n/sec												j
	CR	Cone F = Cone Resis ght of inner r		$R = Res$ $F = Local F$ $g/cm^2/rod$	riction		 							·		
Depth	C	F+C	F	CR	LF	T7 * .*	¬	L		Fr	iction	Resist	ance	_		
-	Kg/cm2		3-2	② X 2	4 × 0.133	Friction Ratio *					Cone R		nce.		<u></u>	
①	2	Kg/cm ²	Kg/cm ²	Kg/cm2	Kg/cm2	6 / 5 7					Fricti				LL	
35, I	5,6	12.3		·			† -	ТТ			Pricti	on Ra	tio		T	—
35,9	4.0						1 -	1 +	+		-	+-	+-		-	
36.7							1 -		\neg	+-		\top	1-		-	
37,5	4,0	6.3			10	•	1 -		_	1		\dashv			\dashv	\dashv
38, 3	6,6	10,6		Λt			-		1		_	+-	\dagger		+	ᅱ
<u>/</u>	5.0	8.3] -					7-			-	\dashv
1.9	4.3	9.31		<u> </u>								 			7	一
40,7 41.5	3.3	7.3	/-	1			H							\exists	1	┪
42.3	4.6	7.6	- / UP	<u>'</u>			Ŀ					1			1	7
43.1	4.3	8.3					<u>م</u> –								\top	7
43,9	7.6	7.3														7
44.7	8.0	8.9					Ξ								\Box	
45,3	8.3	14.0														
6.3	15.3	12.0 28.0	 -				4									
17.1	70,5	48.0					4		1	4	_				\perp	
		10.0		··			4		1-1			_				
							+	_		_	-			\perp		
							+			_		1_1		\perp	\perp	1
							+	+	 	-	_			_		1
							+			_	4_			-	\perp	1
							+			+			-	\perp		1
							4-				+-		_	_		1
				-	 		-+	+-		_				\perp	4	1
							+				1_				1	1
ote: The	friction rati	o is compute	d by dividing	g the local 6	riotion by 4k-		1	Ш_			1			\bot		

						1.00 ·		Dat	ie: .	7.	·30·	-94	2					
ct: .	Spown	/ Plan	<u>, T</u>					Тес	+ No	. 1	3-9			<i>D</i> (_
⊷cation:	FIYA	tsu Di	Ke				_	Ito	L 110.	, . <u></u>		<u> </u>	<u> </u>	<u>k-</u> 3	<u></u>			
Tested by	: flows h	14 Ba	Mes	Rema	nrks:													
Test Proce Rate of	edure: f Feed: 2cm		nore than 1 is							7		-		*				_
	CR =	=Cone Resist	=Friction stance LI rod =0.14 Kg	$R = Resi$ $F = Local F$ $Cg/cm^2/rod I$	Friction			·					===					==
Depth	C	F+C	F	CR	LF	Friction	ר				Fric			sistano				_
	· Kg/cm ²	Kg/cm2	3 — 2 Kg/cm ²	② X 2 Kg/cm2	(4) × 0.133 Kg/cm ²	Ratio*		L			C	one F	 Resis	stance				_
<u> </u>	2	3	4	(5)	6 6	0 / 0		_			LL	Bricti	ion F	Ratio				
24,40		24.0	<u> </u>				†	T	T	TT		T	Ť		T	\top	7	7
25.15	16.0	30,0					1	1	\top	17		十	\exists		+	+	+	7
25,70	16.0	50.0		! !!			1 .	1	†	† †		十	十	1	+	+	+	7
26.35	10.0	12.0		1			1 -	†	\vdash	\Box	1	+	+	1	+	+-	+	+
27.00	614	14.4					-	1	†	1	7		7	+	+	+	+	1
()5_	4.0	10,0					-	1	-	1-1	+	十	+	1	+	+	+	+
1.30	4.2	6,6					-	+	 		-	+	十	-	+	+	+	+
28.95	4.8	7.2					≖ -	1-			+	+	+	+	+	+	+	+
29.60	4.0	6,2					_ [- -	†			+	+	+	+	+	+	+	+ .
<u> 30,25</u>	3,2	5,6					_	+-		-	+	+	+	+	+	+	+-	+
30,90	2.8	47					A-	-		-	+	+	+	+	+	+-	+	+
31.55	3,6	5,8					ш_	\vdash		-	+	+	+	+	+-	+	+	1
32.20	2.8	4.8					_ _			+	+	+	+	-	+	+-	+-	-
32.85	2.0	4.4						\vdash		+		+	+	+		┼	—	1
33.50	3,2	613					+		-	+		+-	+	+	+-		ـ	1
34,15	7	6,4					+		+		- -	+	+	+	-	-	<u> </u>	1
34.80	2.8	5,6					+	-	\dashv	+	- -	+	+	-	_	 	<u> </u> '	
35.45	2.7	4,9					+	\dashv	\dashv		- -	4	+	-	↓_		'	1
36,10	2.9	4.7					+	-+	+	+	-	_	4		 		<u> </u>	Į.
36,75	2.8	5,2					+	+	1	-	+	\downarrow	1	4				ı
37.40	2.9	4.3					+	+	+	+	+	 	1		1			Į.
38.05	3,2	4.8					+		-4-	- -	_ _	\downarrow	 	\perp				-
7/ 70		4.7					+		4	_	\bot	_	_	1_				
. ! !	2.4						1				1_							
· · · · · · · · · · · · · · · · · · ·	•———	58					1		\perp		\perp	L				$\overline{1}$	\neg	
		o is compute	d he dividin	~ the level t	friction by the		1	\perp	\bot								\neg	

						, e. j.		Da	te:	7	-30	- 4	6			
ect: .	·	·						Tec	t No.	7. B. Y	611	<u>ار</u>	00	P		
Location:								103	110.7	·	<i>W</i>		υc.	<i>L</i>		
					rks:			-								
Test Proce Rate of	edure: f Feed: 2cn	n/sec or no n cm or approx	ore than 1 i									-				
	CR	Cone F = =Cone Resis	=Friction tance L od =0.14 K	R = Res F = Local F g/cm ² /rod	iriction			······································	1		·	-	·			
Depth	С	F+C	F	CR	LF	Friction	7	-		l	riction	on Re	sistar	ıce		
1	Kg/cm ²	Kg/cm2	3 — 2 Kg/cm ²	② X 2 Kg/cm2 ⑤	(4) X 0.133 Kg/cm ²	Ratio * ⑥ / ⑤		L		· ·	Cone	Resi	stanc	e		<u>-</u>
40.65	2.9	5,4			6	<u> </u>	-					ction				
11.30	2.4	4.5			 		-	-	1-1		-	-		\dashv	_ _	\bot
41.93	3,2	5.3						+	+		╂				\bot	_ _
12.60	3, 2	4,9	 				-	┼-			 			\dashv	_	\perp
13.25	2.8	5, 1					-	-			-	_	_	_		
90	26	4.3					-	-	-			\sqcup	\dashv	\dashv		
14.55	3.1	4.8					-	-	╁		+		_	\dashv	-	+
15.20	4,8	7.2						┼	$\left \cdot \right $		-		\dashv	-	4	4
ts.85	6,3	8.8					-	\vdash	-					-	4	╀
16,50	5.2	7.6					[-	-					\dashv		4_	_
17.15	4.0	5,9					գ -	-	\vdash		-		-	+	-	↓_
7.80	5,2	7,6					<u>ы</u> –				$\vdash \downarrow$	\dashv	-	4	+	
8.45	3,2	6.0					-					-	\dashv		┼	-
9,10	2.0	4.8					Ω_					-	-		4	ـــــــــــــــــــــــــــــــــــــ
9.75	2.4	4.6					_	-				-	+	_	—	
0,40	5,2	6,6					+						+	4	 _	ļ
1.05	2.7	5,7					-					-		_	 	
1.70	3,6	6,7					4		- -	4-4		-	_		 	
2.35	2,1	4,6					4		+	+	_	1	\perp		1	
3.00	2.9	5,2					+		4	-		_ _	\bot	1_		
3,65	2,5	4.7					+	\dashv		-	_		4	1		
4.30	2.9	6.8					+		_	- -						
85	2.7	7.6					+	4		$\downarrow \downarrow$	_ _		1	1_		
1							1	4	\bot	11		\perp	\perp			$ _ $
							4	1			$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$					
te: The f	riction ratio	is computed	11 11 11					- 1		1 1		- [1		ΙŢ	\neg

DUTCH CONE PENETROMETER Field Data Form 2 Date: 7-30-96 Test No.: 3-96/06 DCP Location: _ Tested by: _ Remarks: _

	C = C CR = Weigl	Cone F = Cone Resist to finner r	Friction tance L od =0.14 K	R = Res F = Local F g/cm ² /rod	riction			<u></u>				<u></u>		1			
Depth ①	C Kg/cm ²	F+C Kg/cm ² 3	F 3-2 Kg/cm ²	CR (2) x 2 Kg/cm ² (5)	LF (4) × 0.133 Kg/cm ² (6)	Friction Ratio * 6 / 5		L	-l	<u> </u>	. 1	e Re	sistaı	nce			<u></u>
55,60	3,2	4.8					-	Τ	Π	ГТ	- Pr	Ction	n Rat	10	T	T-	T-
56.25	2.2	5,4					1 -	1	\vdash			+-	+-	+	+	+	╁
6.90	2,1	4.0] -	\vdash				1-	1-	+-	1-	┼─	╁╌
7.55	2,4	4,4				 	1 -				\dashv	+-	-	†-	+	+	+-
8,20	3,2	5,5					-	†	-		-	+	†-	+	 	+-	┢
85	2.3	5,2					-			-	+	1-	+-	\vdash	一	-	-
4.50	2.4	4.3				· · · · · · · · · · · · · · · · · · ·	-	-		-	-	+-	+-	╁	╁		├
0.15	2,1	4,2					π-				+-	+-	 	-	├─	-	
0.80	1,9	3,4					- [-				+	+	┼		-		_
2,10	1.8	3.1					_			-	-	┼	┼	├			
2,10	1,2	2.8				- <u> </u>	а –			+	┪	\vdash	 	-			
2.75	1,2	2.6					ш —		-			\vdash					
								\dashv	\dashv	+	╢	-	-	-	$\vdash \vdash \vdash$		
							4				-	}					
							+		\dashv		 					\dashv	
							+	{		- -		-				_	
				—— 			+	-			┼-			_		_	
							4	-	\downarrow		-				\dashv		
							4	\dashv	_		1				\dashv		
							+	_	4					\Box		\perp	
							1	\perp	_		\perp						
							1									T	
													T		T		
<i>-/-</i>							1								T		
												T	T		T	T	T

			•			A.					- 0	. C.	j			
yering Albania	Sana	u Plu	. +					Dat	te:		-29	- 9	<u></u>			
)ect; ∠).	JPOIC	N Plr Ash	4m1				 -	Tes	t No.:		B-9	76/	27	12	CP	
Location:	FLY	#Sh_	DIKE													
Tested by:	Rous	h- 13m	سالحج	Rema	rks;											
Test Proce																
Rate of	Feed: 2c	m/sec or no	more than 1	in/sec						.			-			
Run tes	t every 20	cm or appro	ox. 8 inches									_				
•			=Friction	R = Res	sistance		===		====		_==					
	CR We	=Cone Res	istance L rod =0.14 K	F = Local F	riction											
Depth	Гс	F+C		т	<u> </u>			L		LL	Fricti	on Re	istar	ıce		
F	1.	-	F 3-2	CR (2) x 2	LF ④ × 0.133	Friction Ratio*		<u></u>	ч.			e Resi	ــــــــــــــــــــــــــــــــــــــ			
①	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm2	Kg/cm ²	6 / 5					Cone	e Kesi	stanc	e,	,	
30,70	2.4	6,0	1.			<u> </u>	-	Т	1		Fri	ction	Ratio	,		
31.35	7	6.0			 		- }	╀	+			-		-	\bot	\bot
32.00	4.0	6.4					-	\vdash	+		-	-		_	- -	\bot
32,65	2,4	4.5					-	-	\vdash		+	-	\dashv	\dashv	+	- -
3,30	2,4	5.6					<u> </u>	-	H	-		\vdash			+	- -
3.30	3,8	6,0					-	-		-	-	1-1			+	+
54,60	3.7	614					-			\dashv	-		\dashv	\dashv	+	+
5.25		5.6					≖ -	-		+	+-				+	+
5. 90	2.5	4.7					F-				+-		+	+	╁	╁
6,55	3.8	6.2									+-	\vdash	+		+	+-
7.20	3.8	6,0	 				_ A						_	\dashv	+-	+-
7.85	2.4	4.8					ш		_	+	1-1		-	+-	+-	╁
8,50	3,9	5.6					Ω			7		7	\dashv	+	+-	+
3,15	2,4	4.5					7					+	+	+	+	\vdash
9.80	1,6	2.8									1 1	+	+	+	1	
0,45	2.0	4.0	· -				Ţ			\top		7	1	+	+	
1,10	2.3	4.5								1			十	1	1	
2,40	215	4.8					I						1	1	1	
1	2,4 3,4	4.4						\prod	1				1	+		
	3.8	5,6												\top		
. 7	4.0	5,6					1	\perp					T	T		_
	3.8	6.0						1	\perp				T	T		7
	3, 2	610					1						\prod			\neg
1 -	2.4	5.2					1									\neg
- 100		3,2		- 1	i	1	- 1	1	i	1 7	7	1	7	1-1	$r \rightarrow r$	

								Dat	e: _		7-2	9-9	ĝ (_e				
et: _				B				DĊ	P								
Location:								103	. 110,.	·		<u> </u>					
	:																
Test Proce													 -		<u> </u>		
Rate of	Feed: 2cm	n/sec or no cm or appr	more than 1 iox. 8 inches	in/sec						-							
-	CR	=Cone Res	F = Friction sistance L r rod = 0.14 K	F = Local 1	sistance Friction length					<u> </u>							
Depth	C	F+C		CR	LF	Friction	7				Fricti			nce			
	Kg/cm2	Kg/cm ²	3 — 2 Kg/cm ²	② X 2 Kg/cm ²	4 X 0.133 Kg/cm ²	Ratio *		L		<u> </u>	Con	e Res	istan	ce	ـــــ	ــــــ	
①	2	3	4	(§)	6	6 / 5 7		<u> </u>				ction	Rati				<u> </u>
46.95	2.4	3,2					1	T	T	П	Ť.,	7		Ť	Γ	T	T
17.60	2.2	4.5					7	1				1	1		_	-	
18.25	2,4	5.7					1	1	1		_	1	1			 	ļ —
18,90	3.8	5,6					1	1	1		1	1			\vdash	 	
19,55	2.4	614					1 .	T			\top	†	-		-		
20	2.0	6.0] .	1		\dashv		\top					
0.85	3.6	5.6					1 .	1			\top				-		
1.50	2.4	5.8					=										
2.15	2.8	SIZ		<u></u>			F .				1						
2.80	4,0	5.9	Pulle	d Rod	RAW						1						\neg
3.45	2,0	3.6	Rue	ns To			~ -				\top				\neg		\dashv
4.10	0.0	5.2					ш				1			\neg	-		\neg
4.75		4.4		· ·			۵										\neg
5.40	2.0	4,2					-				T		1	十	\dashv	_	\dashv
0.05	7,4	5.2					_			1	\top		7	\neg	\dashv	\dashv	7
6,70	0,0	5,2	 						\neg	1	1		_	十	+	7	\dashv
7.35	1.8	4,4							\exists	\top			7	+	7	十	7
8.65		6,4							1	_			+	+	\dashv	十	\dashv
		614							寸	1		+	\dashv		\dashv	\dashv	-
9.95		5,6					7		+	1		+	十	+	十	\dashv	\dashv
0,60	2,4	4,4	<u> </u>				7	7	_	1		7	_	\dashv	+	\dashv	\dashv
1.25	2,0	4.0					7	1	+	1		\dashv	\dashv	+	+	+	\dashv
80	46	3,2					+	7	\dashv	+		+		+	+	\dashv	
2.55	1,6	2.4					+	-	+	+	\vdash	+	-	+	+		
		. ′	STOPPED	Bopy	`		+	\dashv	+	-	\vdash	-		+	+		\dashv

			•			(ex.		Date:		<u>_Z-</u>	30-	96			
ct: _	Spann	V PlAN	NT					Test ?	No.: _	96	-30- 109	<i>Î</i>	ワヒド	2	
-cation: .	_FIY	H.Sh.	DiKe	·			,		14				<u>. 16 </u>		
Tested by:	Rous H	+ BA	Kes	Rema	nrks:										
Test Proced	dure:														
Rate of I	Feed: 2cm	l/sec or no me m or approx	nore than 1 ir	n/sec					-						
-								···		<u>-</u>				_	
•		-Cone Resist	=Friction stance LF rod =0.14 Kg	R = Resi F = Local F [g/cm²/rod l	Friction					1	1	1 .			1
Depth	C	F + C	F	CR	LF	Friction	ר				iction R				
1	Kg/cm2	Kg/cm ²	3-2	② X 2	4 X 0.133	Ratio *		LL			Cone Re	esistar	لـــــا nce		
①	2	Ag/cm ²	Kg/cm ²	Kg/cm2	Kg/cm ²	6 / 5 7		<u></u>		_11					
29.20	3.8	6.0		· .			1 -	TT	\top	7	Friction	a Kan	10	T	\top
29.85	4.0	7,6					1 -	++	+	++	_	+	++	-+-	+
30,50	2.4	5,2					-	+	+	++	_	+	+	+	+
31.15	9.6	10,4					-	++	+	++	+	+-	+-+	+	+
31.80	4,5	10.4					-	++	+	++	+	+	-	+	+
45		6,4					-		+	+	_	+-	+-+	+	+
110	2.4	5,7					i 7	1	+	++	-	+-	+	+	+-
33,75	3,2	5,2					≡	-	1	1	1	+	1	+	+-
34,40	3,2	4.8					H	1	+	H	+	+	1	+	+
35.05	3.9	5,9					7		+	一	+		 	+	+
35,70	3,6	614					~	\prod	+		1	+-	一十	+	+
36.35	3.2	5,6					щ		1		+	1-1		+	+-
·	4.0	6.2					٦		+	厂	-	+	十	+	++
37.65	3,2	<i>5</i> ,7					T	1	1		1		7	+	++
_	3,2	5.6					T		+	一十	1	1	_	+-	+
	4.0	6,4					T	1	1-1	一十	1-1	TT	+	+-	-
		5,6					T	1	11	7	+-	1	+	+-	-
	2,4	5,2					+	+	++	1	+-+	一十	+	+	H
		4.3					1	1	1	,—	++	1	+	+	
	. 1	4,4					1	1	11	-	++	1	+	+-	H
1 .	1	4.5					1	+	+	1	+++	-+	+	+++	7
		5,6					7	1	+	+	++	+	+	++	-
. , .		5,2					+	1	+	+	+++	+	+	+-+	,—
13 3		5.6					+	+	+	+	+++	+	+	+	-
14.80 4	4,0	8.0		g the local f			+			+-	++	-	+	+-+	

n. Santaning	,	0.1						Date	:			····	 ,								
weation:										Test No.:											
Tested by: Remarks:																	•				
Test Proced		· · · · · · · · · · · · · · · · · · ·																			
Rate of	Feed: 2cm	n/sec or no n	ore than 1 i	n/sec						-			•								
Run test every 20 cm or approx. 8 inches																					
			=Friction	R = Res																	
		=Cone Resis ght of inner r	tance L) od =0.14 K	F = Local F g/cm²/rod	riction length																
Depth	С	F+C	F	CR			_	L	L1		Fricti	on R	Lesist	ance	—						
-		İ	3-2	② X 2	LF 4 × 0.133	Friction Ratio*	1	L	LL		Con	e Re				—	Ц				
<u> </u>	Kg/cm2	Kg/cm2	Kg/cm ²	Kg/cm ²	Kg/cm ²	6 / 5 7		Ĺ													
45,45	2.8	4,4					-	$\overline{1}$			_ Fri	ction	n Rai	tio	<u> </u>	7					
46,10	2.2	4.8					1	╂═			+-	+-	+-	+-	+	+	\vdash				
46.75	2.8	4,9				· · · · · · · · · · · · · · · · · · ·	┨ ・	╁╌┤	\dashv		+-	╁	╀	╀	+	┼	\vdash				
47.4	3,2	5,6					· ·	+	+	+-	+-	+-	+-	╀	╬	┼	$\vdash \vdash$				
48,05	2,4	5,6					-	\vdash	+		+-	╁╌	+	┼	+	┼	H				
70	2.0	4,9					-	$\dagger \dagger$	+	+-	+-	┼-	+-	╁╌	+	┼─	\vdash				
135	2.0	4.4					-	1-1	-+	_	+	†-	-	╁	+-	 	\vdash				
50,06	2,4	5,3					=		1	1	+	†	-	-	+	\vdash					
50,65	2,0	4.8					H		+	1	†-	-		\vdash	†-						
51.30	2.0	4.5					_		\top	1	1			\vdash	\vdash		\dashv				
51.95	2.4	S, Z	4.				<u> </u>			1		<u> </u>	-		†		\dashv				
52.60	2.2	4.3					щ_			7	1		-	_	1		\dashv				
53,25	1.9	4.0		<u>-</u> -			Ω										\exists				
53,90 54.55	2.0	4.3													\Box		7.				
55,20	1.9	4.8														\neg	\neg				
55.85	116	4,4															\exists				
56,30	2.6	4.7					1			<u> </u>											
	1,9	4.8					1	1				\Box				\top					
		4.7					1		1								7				
58.45	2.8	5,2					1		_							\int					
58.45	3, 2	5.8					4					\perp				\int					
	_	6.4					1		_	_	\bot					\int	\int				
, , , , , , ,		6.0					4	_	1_			_					\prod				
1,05	2.0	36					1				\perp	\perp			$oxed{\int}$		\rfloor				
lote: The fr	iction ratio	is compute	d by dividing	the local 6	riction by the									\int		T	7				

DUTCH CONE PENETROMETER Field Data Form

< N	Connu	. + دراه				(3) · (3) ·		Date	e:	 .						 ,	
ct:	Sporn.	F14121				·		Test	No.:					~-			
					rks:												
Test Proced	lure:			- Kenia	183.												
Rate of		sec or no m	ore than 1 i	n/sec								_	•				-
	C = C CR = Weigh	Cone Resis	=Friction tance Ll od =0.14 K	R = Res F = Local F g/cm ² /rod	riction	·							•				
Depth	С	·	D: 4	ז	L	J	II.	Fricti	on R	Lesis	ance	<u> </u>	ш				
•	. Kg/cm ² (3)—(2) (2) x 2 (4) x 0.133 (8g/cm ² (3) (4) (5) (6)			4 × 0.133	Friction Ratio * ⑥ / ⑤		<u> </u>	Ь		Con	e Re	sista	nce				
1 76	Kg/cm ² Kg/cm ²				6] .		اا			ction		tio	ш.		
62.35	1.9	3.2		·				_				L			I		
3.00	1,2	2.3 1.4					-	<u> </u>				1_					L
0.00	. Y	1,7					_				_	_	_	1	1	_	
							_	-				_	<u> </u>	1_	↓_	<u> </u>	L
							-			_		_	 		_	<u> </u>	<u> </u>
1				·			-					-	├-	╂-	-		<u> </u>
							н –		\dashv		+-	-	-	-			<u> </u>
							<u>+</u>		+	+	┪┈		-	-	-		
								\neg	-+	+	+-	 	-	\vdash	-	-	
			<u> </u>				~ -	\neg		+	 	-	-	 -			
							щ			\top	1-			 	-		
							ρ]										
							1										
							1									7	
			 				1	_ .	\perp								
							1	_									
							+	_	\perp							\int	
							+		4	1		\bot	_			\perp	
							+	+	+	+	$\vdash \downarrow$	_	_	4	_	1	_
							+	+	+			_	_	_	\bot		_
							+	+	-	+		4	_	\dashv	4	_	_
1							+	+	+-	+		+	_	-	_	_	4
								J	1	1 1	I	- 1		1	- 1	ſ	- 1

AEP CIVIL ENGINEERING LABOR ATORY LOG OF BORING

		BER _					-				•		
COV	/PAN	Y _ AP	PALAC	CHIAN	POWE	R CO	MPA	<u>/N</u> Y			BORING NO. 9301 DATE S		
PRO	JECT	SPO	ORN PI	LANT A	ASH HA	<u> UL P</u>	OAL)			BORING START <u>09/13/93</u> BORING FINISH	0	9/14/93
bo	ROIN	ATES _									PIEZOMETER TYPE SS WELL TYPE		
GRO	DND	ELEVA	LION		SY	'STEM					HGT. RISER ABOVE GROUND 2.5		
WAT	ER LE	EVEL	ਨ Di	RY	Ī		Y				DEPTH TO TOP OF WELL SCREEN 3.5 - BO		
TIME			-				7				WELL DEVELOPMENT BACK		
DAT			9-9	-93							FIELD PARTY MCR-TLS R	IG _	BK-81
<u> </u>									/ 		·		
шα	ш		IPLE	STAN	IDARD RATION TANCE	_ <u>_</u>	RQD	DEPTH	L	S	SOIL / ROCK	ا ر ا	DRILLER'S
SAMPLE	뒽		PTH EET	PENET	RATION	E22		IN	GRAPI	S	·	WELL	NOTES
S S	S.			''	.,		%	FEET	6-) o	IDENTIFICATION		
1	SS	FROM 0.0	TO 1.5		vs / 6" 3-4	1.2	-		=	1-	BROWN SILTY CLAY Dry:		Inside of augers dry
1	3 I		i i	i	5-15	.9				-	BROWN SANDY CLAY Moist, with	1 3	untill hitting sand
3	SS SS	1.5 3.0	3.0 4.5	i	2-13	1.1		-	 	;├─	some gravel.		and gravel. 3.0 Top of gravel.
1	1 1			ļ	2-10 0-22	1.2		5 -	6	4	GRAY BOTTOM ASH Moist.		3.5 Top of screen.
4 5	SS SS	4.5 6.0	6.0 7.5	1	8-20	1.4			4.4	1			
6	SS	7.5	9.0	l .	20-16	1.4			4	1		:計:	
7	SS		10.5	į.	6-13	1.5		٠	ΙÞ.	4			
8	SS	10.5	12.0	1	1-10	1.4		10 -	4.4	7	GRAY FLY ASH Moist.		
1	SS	12.0	13.5	1	2-13	1.3			4			:泪:	12.5 Bottom of
	SS		i	1	11-5	1.4			4	4			screen.
11	SS	15.0	16.5	 	4-2	1.3		15 -	14.	d		ļ	13.0 Bottom of gravel and bottom
	SS		18.0		1-1	1.5] .	4	4			of hole.
1	SS		19.5	Į.	0	1.5			10.	9			
,	SS		1	I	- 4	1.5		20 -	. is .	4]	
1		21.0		l	7-8	1.5					BROWN SAND AND GRAVEL	}	
	SS		I)	5-6	.8			=	1	GRAY FLY ASH]	
)			25.5	1	0-10	1.2	L	25 -	丰	1	BLACK BOTTOM ASH BROWN SILTY CLAY Wet.		
	1 1	25.5	1			1.3		23	巨	1	BLACK BOTTOM ASH Wet.	1	
10	99	27.5	29.0	5-	5-9	1.5			1-	j .	BROWN SILTY CLAY Moist.	1	
1		1	31.0	1	3 3	1.7		00	=	1	BROWN SANDY CLAY Moist.	1	
	1			1				30 -	E	-	BROWN AND GRAY SILTY CLAY		}
		l'	32.5	5-	7-9	1.2			<u> </u>	1	Mottled, moist BROWN SILTY CLAY Moist.		
22	ST	32.5	34.5			1.4	Ì		上	-	BROWN AND GRAY SILTY CLAY		}
23	33	34.5	36.0	6-	7-9	1.5		35 ~]	Moist.		
24	ST	36.0	38.0			2.0	1		上	1	BROWN/GRAY CLAY BROWN SILTY CLAY Moist		
25	ss	38.0	39.5	5-	7-8	?		}	主	-			
1	1	39.5	1	ļ		2.0	 	40 -	-[7			
	1	Ì	1	١.	<i>-</i> -				丰	-	BROWN SANDY CLAY Moist.	†	
1	1	41.5	1	1	5-5	3.0	İ		<u>F</u>		BROWN CLAYEY SAND Moist.	1	
28	ST	43.0	45.0	i		2.0		45 -	上.	<u>-</u>	BROTH OBJECT OF THE		
1	SS	ł	46.5	3-	3-4	?	1	75	-	1	TO COMPLETE AND ORANGE West	-	
30	ST	46.5	48.5			1.6	1		10		BROWN SAND AND GRAVEL Wet.		
	ļ					1			$\frac{1}{2}$	d		<u> </u>	
	1	TYP	E OF C	CASING	GUSE)	1		_,1-2		Continued Next Page		
-	1			CORE				PIEZON	METF	RTY	PE: PT = OPEN TUBE POROUS TIP, SS	= Of	PEN TUBE
X		6" x 3	.25 HS	Α				SL	ОΠ	ED	SCREEN, G = GEONOR, P = PNEUMATIC)	
	<u> </u>		.25 HS		NOCE	A 11		WELL 1	TYPE	: (OW = OPEN TUBE SLOTTED SCREEN, GI	V = (GEOMON
-	+-		ASING ASING		NCER	<u>4"</u> 3"		11456					
	+-		ACIAIC			 _					RECORDER		

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL EN VEERING LABORY ORY

JOE	NUN	/BER _	3015				_		LC	JG (DF BORING		
CON	4A9N	IY <u>A</u> F	PALA	<u>CHIAN</u>	POWE	RCC	<u>MP/</u>	<u>AN</u> Y			BORING NO. SI-3 DATE S	SHEET	_1_0F_2_
ž)JEC	T_SP	<u>ORN P</u>	LANT A	ASH H	AUL F	ROA)			BORING START <u>06/16/88</u> BORING FINISI	н(06/23/99
ψŌ(ORDI	NATES .									PIEZOMETER TYPE WELL TY		
GRO	DUNE	ELEVA	TION	600.3	s`	YSTEM					HGT. RISER ABOVE GROUND		
WAT	ER L	EVEL	☑ 2	8.0	¥ 4	9.0	Ā				DEPTH TO TOP OF WELL SCREEN BO		
TIM	=				07	710					WELL DEVELOPMENT BACH		
DAT	E		06/1	19/88	06/2	23/88					FIELD PARTY MCR/TJH F	≀IG _	B-61
<u> </u>		SAA	MPLE	STAN	DARD	>	RQD		T	ß		1	T
SAMPLE	岸		PTH	PENET	RATION		TIQE	021 111	GRAPH	Ü	SOIL / ROCK	4	DRILLER'S
E E	Æ	IN	FEET	RESIS	TANCE		%	IN FEET	GRA C	ဟ	IDENTIFICATION	HELL	NOTES
0,2	<u>"</u>	FROM	TO	BLOW	/S / 6"			reei	Ļ.	-		—	
]	ĺ			
1	SS	3.0	4.5	16.1	6-14	.83		-	-	-	BROWN SILTY SAND, moist, quartz,	-	
Ŀ			7.5	10-1		.00		5 -	 	 	trace of small gravel	1	1
]	ļ	-			:		
9	SS	8.0	9.5	5-4	1.3	.17		-	0.		LIMESTONE AND SAND	1	
	-		- 5.0					10 -	<u> </u>			1	
l .						} }		-				Ì	
3	ss	13.0	14.5	4-4	l-5	.5		-	Ď.		SILTY SAND AND GRAVEL, wet to	1	
				· · ·				15			saturated, quartz, 1/2 max size,		
								· -			rounded		
1	SS	18.0	19.5	11-1	2-11	1.0		-		\vdash	BROWN SANDY SILT, moist	1	
								20 -				İ	
					,		}	-					
5.	SS	23.0	24.5	5-6	8-8	1.0		-			BROWN SANDY SILT. moist	l	
					_			25 —					
		!						_				모	
6	SS	28.0	29.5	. 7-8	9-9	1.0		-			BROWN SANDY SILT, moist	볼	
		··-						30 —				į	
								-				ĺ	
7	SS	33.0	34.5	8-9	-11	.83		-			BROWN CLAY, moist to wet, medium to low plasticity		
								35 -			to low plasticity		
1]	-					
8	SS	38.0	39.5	7-8	-10	1.0	1	-			GRAY ORGANIC SILT, moist		
				\				40 –	,				
								_					
9	SS	43.0	44.5	4-4	-5	1.3		_			GRAY BROWN SILTY SAND, moist to wet w/ organic material		İ
10	ST	45.0	47.0			2.0		45			wet w/ Organic material		SHELBY TUBE
11	ST	47.0	49.0			1.2		-					PUSH 2.0' REC 2.0'
								_				<u>¥</u>	TIME 4 SEC
ļ		TYDE	CE C	ASING	HSED	L			·		Continued Next Page		
)—	1 .		ROCK					DIE 201		T)/C		- 05	EN TURE
		6" x 3.	25 HSA	4				PIEZOMI	EIER TTE	D S	CREEN, G = GEONOR, P = PNEUMATIC	- UI	LITIOUL
		9" x 6.	25 HSA	4	IOEE	40]	WELL TY			N = OPEN TUBE SLOTTED SCREEN, GM		EOMON
\vdash	┼	NW C	<u>ASING</u> ASING	ADVAN	IUEH_	4" 3"	\dashv	44CLL I X	rc;	$-\gamma$	77 - OF EN TOBE OLOTTED CONCERN, CIM		

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL EN NEERING LABOR ORY

LOG OF BORING JOB NUMBER 3015 BORING NO. S1-3 DATE____ SHEET 2 OF 2 COMPANY APPALACHIAN POWER COMPANY BORING START __06/16/88 __ BORING FINISH __06/23/99 OJECT SPORN PLANT ASH HAUL ROAD **STANDARD** RQD ഗ SAMPLE SAMPLE DEPTH SAMPLE PENETRATION TO SERVICE OF THE PENETR SOIL / ROCK DRILLER'S DEPTH ပ ᆜ GRAP IN IN FEET ഗ IDENTIFICATION NOTES % FEET \supset BLOWS / 6" **FROM** TO Ω PSI 550 SHELBY TUBE **PUSH 1.2' BROWN SILTY SAND AND** 12 SS 53.0 54.5 34-50/.2 .5 **REC 1.2'** GRAVEL saturated, 3/4" max. size, TIME 7 SEC 55 rounded, quartz PSI 750 BROWN SILTY SAND AND GRAVEL, 13 SS 58.0 59.5 22-26-29 .67 saturated, 3/4" max. size, rounded, 60 \quartz **BROWN SAND AND** SS 63.0 64.5 24-24-29 .83 14 GRAVELsaturated, 1/2" max size, 65 rounded, quartz DARK BROWN SAND AND GRAVEL .25 15 SS 68.0 69.5 19-14-10 saturated, 3/4"max. size, rounded, 70 quartz, some fines BROWN SILTY SAND, saturated, w/ SS .67 16 73.0 74.5 22-19-10 some 1" max. size quartz 75 BROWN SAND, saturated, quartz, .5 17 SS 78.0 79.5 8-8-9 trace of fines 80 BROWN SAND, saturated, quartz, .25 18 SS 83.0 84.5 12-12-15 trace of fines 85 BROWN SANDsaturated, quartz, trace SS 88.0 89.5 14-17-17 .75 19 of fines 90 **BROWN SILTY SAND AND** 20 SS 93.0 94.5 12-19-16 1.2 GRAVEL saturated, 1" max. size, 95 \quartz **GRAY SANDSTONE** Auger Refusal 95.2 Set HW casing at 95' 100 Used 3 7/8"roller bit to cut gray sandstone to 101.7' Cut rock to 99' Casing not on rock, Set casing at 96' Cut rock to 101.7' Void in sandstone at 99.2' and 100.1', both voids approx 3 to .4' Lost water 99,2 Tip of slope indicator at 101.7' Indicator casing installed in 10' lengths

FIELD DATA FROM: "PHILIP SPORN POWER PLANT – STABILITY ANALYSIS"

PREPARED/COMPILED BY: THE GEOTECHNICAL ENGINEERING SECTION OF AMERICAN ELECTRIC POWER SERVICE CORPORATION

DATED: MARCH 2009

GEOTECHNICAL DATA COLLECTION REPORT

AEP SPORN FLY ASH AND BOTTOM ASH POND COMPLEX NEW HAVEN, WEST VIRGINIA

HCN/TERRACON PROJECT NO. N2095019 March 3, 2009

Prepared For:

AMERICAN ELECTRIC POWER

Prepared by:

H.C. NUTTING
A Terracon Company
Charleston, West Virginia

a lierracon company

March 3, 2009

HCN/Terracon Project No. N2095019

912 Morris Street Charleston, West Virginia 25301 304-344-0821 Fax:304-342-4711

Mr. Tim Howdyshell

American Electric Power

1 Riverside Plaza – 22nd Floor
Columbus, OH 43215

Re: Geotechnical Data Collection Report

AEP Sporn Fly Ash and Bottom Ash Pond Complex

New Haven, West Virginia

Dear Mr. Howdyshell:

H.-C.-Nutting-Company (HCN), a-Terracon company-is-pleased-to present our geotechnical data-collection report for the geotechnical services associated with the maintenance of the American Electric Power (AEP) Sporn Fly Ash and Bottom Ash Pond Complex in New Haven, West Virginia. This work was performed in general accordance with our proposal dated February 9, 2009 and AEP Letter of Authorization dated February 10, 2009.

SCOPE OF WORK

HCN's scope of work for this project included performing a total of five (5) test borings, installation of observation wells at all 5 boring locations, inspection of drilling activities, preparation of boring logs based on visual classification, and preparation of this report.

FIELD EXPLORATION

Test Borings

A total of five (5) Standard Penetration Test (SPT) borings were drilled for this project. The test borings were selected and staked in the field by AEP and HCN personnel and later surveyed in the field by AEP surveyor (to be provided).

DELIVERING SUCCESS FOR CLIENTS AND EMPLOYEES SINCE 1965
More Than 95 Offices Nationwide

AEP Sporn Fly Ash and Bottom Ash Pond Complex HCN/Terracon Project No. N2095019 Company

The test borings were performed utilizing a drill rig mounted on an All-Terrain Vehicle. The field operations were performed between February 16, 2009 through February 23, 2009. Boreholes were advanced and stabilized using hollow-stem augers. The drilling activities were performed under the supervision of HCN personnel.

Sampling was accomplished using the Standard Penetration Test (ASTM D 1586) and Shelby tube (ASTM D 1587) methods. Split-spoon samples were obtained at 2.5 ft. intervals. Shelby tube samples were collected at within cohesive soils. The borings were completed at depths of 50 feet below the existing ground surface.

After completion of drilling activities, all of the five test borings were converted into observation wells. All wells were constructed from 1.92-inch OD (1.5-inch ID) threaded PVC with #10 slot screen and 5-foot solid PVC section at the top. The PVC casing was constructed to just below the existing ground surface and protected with a "Global HRB 141412-F H20" locking steel protective cover. The well pad was then constructed around the observation well with approximate dimensions of 3 feet by 3 feet and a minimum of 8 inch thickness.

Each well was developed using a surge block and evacuated until the discharge water stabilized. All development data and estimated purge volumes were recorded and are shown on the attached well development logs.

On the following table we have indicated the beginning and ending depths of the screening sections.

Observation Well Screen Depths

Boring	Screenin	g Section
	Beginning Depth (feet)	Ending Depth (feet)
PZ-09-01	6	50.3
PZ-09-02	5.5	35
PZ-09-03	6	50.4
PZ-09-04	5.5	49.8
PZ-09-05	5.2	50,2

The observation well logs are included with this report.

AEP Sporn Fly Ash and Bottom Ash Pond Complex HCN/Terracon Project No. N2095019

H. C. NUTTING A **Terracon** Company

CLOSING

We appreciate the opportunity of working with you on this project. Please contact us concerning any questions that may arise during review of the report, or if you require additional information as you proceed into the final design and construction stage of this project.

Thank you for your consideration.

Respectfully submitted, H. C. NUTTING COMPANY

Lewis E. Eplin Staff Geologist Yogesh S. Rege, P.E. Department Manager

Geotechnical Services

APPENDIX

FIGURE 1: BORING LOCATION DIAGRAM
LOG OF TEST BORINGS
WELL DEVELOPMENT LOGS
OBSERVATION WELL LOGS
GENERAL NOTES
UNIFIED SOIL CLASSIFICATION SYSTEM

LOG OF BORING NO. PZ-09-01 Pag												
CL	ENT											
017	American Electric Power		550	150			•					
SIT	E Philip Sporn Power Plant New Haven, West Virginia		PRO			Flv	Ash a	and Bo	ottom	Ash I	Pond C	omplex
	Boring Location: 721043.509, 1735345.011			1			MPLES				TESTS	••••
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 600.817 ft		DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N** BLOWS / ft.	WATER CONTENT, %	DRY UNIT WT pcf	UNCONFINED STRENGTH, psf	
	0.5 ASPHALT	600.5		1		Ė	 -					,
	FILL, stabilized and compacted bottom ash FILL, silty sand with bottom ash, trace	600	=	SM	1	SS	18	24				
	gravel, gray, medium dense, dry to moist - Geogrid observed at 4'		5—	SM	2	SS	18	17				
				SM	3	SS	18	16				
₩	8.5	592,5	_									
	FILL, silty sand with bottom ash, gray to dark gray, medium dense, moist		10-	SM	4	SS	18	14		· ·		<u>.</u>
	12	589		SM	5	SS	18	12				
	FILL, silty sand with gravel, light brown, medium dense, moist	587									00001	
	<u>FILL</u> , lean clay with sand, light brown, stiff, moist	<u> </u>	15-	CL	6	SS		16			9000*	
	18.5		=	CL	7	SS	12	10			4000*	
	18.5 FILL, silty sand with gravel, dark brown, loose, moist	582.5	20-	SM	8	SS	18	14				
	21 FILL, bottom ash with coal fragments,	580	20		9	SS	18	18			 	
\bowtie	black, medium dense, wet	577 5										
	LEAN CLAY with SAND light brown, stiff, moist	577.5	25—	CL	10	SS	18	19			7000*	
				CL	11	ST	24					800 psi/24 sec
	28.5 SANDY LEAN CLAY, brown to gray, stiff, moist	572.5	26	CL	12	SS	18	20			7000*	
			30	CL	13	SS	18	16			6500*	
	Continued Next Page					-						·
The betw	stratification lines represent the approximate boundary lines een soll and rock types: in-situ, the transition may be gradual.			٠.								Penetrometer matic hammer
	TER LEVEL OBSERVATIONS, ft						BORI	NG ST	ARTE	D		2-20-09
	[™] 21 WD [™] 18.1 4 hr		<u> </u>	-	_	_ [BORI	NG CC	MPLE	TED		2-21-09
	¥ 21 WD ¥ 18.1 4 hr ¥ 18 48 hr ¥	r F	3[Ţ			RIG		Tra	ck F	OREMA	N
WŁ						ſ	LOGO	3ED	Ī	E JO	OB#	N2095019

AEPSPP003360

	LOG OF BORING	G NC).	PZ-	09-	01				Pa	ge 2 of 2
CLIE											
SITE	American Electric Power Philip Sporn Power Plant	PRO	JEC.	<u> </u>							
,	New Haven, West Virginia	, , , ,	Sp	orn	Fly .	Ash a	ind Bo	ttom	Ash	Pond Co	mplex
					SAI	MPLES	3 -		· ·	TESTS	
GRAPHIC LOG	DESCRIPTION	#:	USCS SYMBOL	8		RECOVERY, in.	S/ft.	A ENT, %	DRY UNIT WT	UNCONFINED STRENGTH, psf	,
E 455		DEPTH. ft.	nscs (NUMBER	TYPE	RECO	SPT - N** BLOWS / ft.	WATER CONTENT, 9	DRY U	UNCO	
	SANDY LEAN CLAY, brown to gray, stiff, moist	_		- 4.4	-	40	40			6500*	
	Hoist		CL	14	SS	18	18			0500	
	·	35								<u> </u>	
		_	CL	15	SS	18	10			4500*	
		=	CL	16	SS	18	18			4000*	1
		40	-		-	-					
		_	CL.	17	SS	. 18	14			3500*	, ,
		-=	-							+	
			CL	18	SS	18	18			5000*	
		45—							-	 	i=
			CL	19	SS	18	13		-	3000*	
	47 554 CLAYEY SAND, brown, dense, very moist,	_				ļ		<u> </u>			<u>:</u>
	fine grained sand	-	SC	20	SS	18	47	 -	 		· · · · · ·
	₅₀ - with gravel at 49' 551	50-	30	20	33	10			<u> </u>		
	BORING COMPLETED	50				ļ					
	r manaka da mana arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa arawa araw		, ,					Augus (Augus)			
											·
							1				
			l				·				
ł			Ì					1] .
١	•				l	}					
-											
1			ŀ			٠.	1				
						}					[
	·										
									1		
he	stratification lines represent the approximate boundary lines seen soll and rock types: in-situ, the transition may be gradual.	L	1	<u> </u>	<u>بــل</u>		<u> </u>	**CM	*Calib E_140I	rated Hand I SPT auto	Penetrometer matic hammer
	TER LEVEL OBSERVATIONS, ft		•			BOR	ING S	بنسيت			2-20-09
VA /L:			ą.				ING C)	2-21-09
		ar	-6	71	7	RIG				FOREMA	
VL.	¥ 18 48 hr ¥	ا ليب			-		GED				N2095019

	L	OG OF	BORIN	G N	0.	PZ-	09	-02					age 1 of 2
CLIENT				Γ									age I UI Z
SITE	American Electric Po Philip Sporn Power F			DD.	OJEC		•						
OHE	New Haven, West Vir			"			Flv	Ash a	and Bo	ottom	Ash	Pond C	omplex
Boring Loca	ation: 720306.293, 17356	 			T			MPLES				TESTS	
					١.								
GRAPHIC LOG	DESCRIPTION	Ī]	USCS SYMBOL			RECOVERY, in.		%	Ş	UNCONFINED STRENGTH, psf	
皇	. DEGOTAL HOL	•		1	₹	eg.	1	魠	SPT - N** BLOWS / ft.	WATER CONTENT,	DRY UNIT WT	NED FED	
AP				DEPTH, ft.	ဗွ	NUMBER	TYPE	Ó	4-N	崑] ≻	SE	
	ırface Elev.: 601.345 ft				S	≥	1	뿐	유립	\$8	8,8	N P	
0.5 ASPI	IALT stabilized and compacte	d hattam	601		‡	ļ .	100	1		<u> </u>		ļ	
2 ash	stabilized and compacte	u bollom	599.5	4	7	1	SS	12	52				
₩ FILL,	silty sand with bottom as I, dark gray to brown, ver	h and		-	\pm								
www grave moist		y dense,		1	⊣SM	2	SS	18	65				
	•			5-	†		 			 			
7			594.5		SM	3	SS	18	51				
	silty sand with gravel, lig e, moist	ht brown,		-	_	 	 			<u> </u>		 	
***	, 11000				SM	4	SS	18	36				
>>>				10-	1	-	-				<u> </u>		
***					SM	5	SS	18	47				
※				_	 		ļ.,					<u> </u>	ļ
]	SM	6	SS	18	45			-	<u> </u>
※				15-								<u> </u>	
₩ <u>16</u>	silty sand, light brown, ve	ni danaa	▼ 585.5		CM		00	18	37			0000*	
dry to	moist, fine grained	ery dense,		_	SM	7	SS	18	31			9000*	
>>>				-	1						· .		
				:	SM	8	ST	12			ļ	ļ	1000 psi/24 sec
	·	•	Ā	20-	7								po#21000
XX					SM	9	SS	18	33			9000*	
23.5			578	-	+							<u> </u>	
	silty sand, light brown, de	ense, moist,	<u>010</u>] :	SM	10	SS	18	38				
XXXX	rained			25]								
	bottom ash with coal frag	ments,	<u>∇</u> 575.5		‡	11	SS	18	21			-	
₩ black	medium dense, wet			_	1_	<u> </u>			-	<u> </u>		<u> </u>	
28.5	CLAY, trace to with sand	d gray to	573		- CL	12	SS	18	16			8000*	
light b	rown, very stiff to stiff, m	oist		30-				.0				0000	·
- Trad	e organics (roots) at 28.5	- 29'			-	4.	-	<u>.</u>					4000
				-	- CL	13	ST	24					1200 psi/30 sec
	Continued Next P	age											
	es represent the approximate back types: in-situ, the transition i												Penetrometer
	OBSERVATIONS, ft	nay be graduat	·				T	BUD!	NG ST			or i autoi	2-19-09
WL \$\frac{\pi}{26}\$	15						-		NG CC				2-19-09
WL ¥ 21.1	WD ₹ 16 24 b	<u>"</u>	2 [[T F	7	7	RIG	ING CC			ODEMA	
WL = 21.1	12111-		-11		in C	J I	■		NED.			OREMA	
****								LOGO	2ED		LE J	OB#	N2095019

CLIEN											
SITE	American Electric Power Philip Sporn Power Plant	PRO	JEC.	r					F		
HIE	New Haven, West Virginia		Sp	orn	Fly A	Ash a	nd Bo	ttom	Ash	Pond Co	mplex
					SAI	IPLES				TESTS	
			١. ١			_				l st	
3	DESCRIPTION		108			Y, in		%	¥	음. -	
2	DESCRIPTION	<u>ئ</u> ے ئے	λγ	띪		VER	S/#	" EN	LIN	HED	
901 2111 1529		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in	SPT - N** BLOWS / ft.	WATER CONTENT, %	DRY UNIT WT pcf	UNCONFINED STRENGTH, psf	
5		_ 5	ő	ž	7	8	<u>m</u>	≥ŏ	2 2	50	
	LEAN CLAY, trace to with sand, gray to light brown, very stiff to stiff, moist	_	CL	14	SS	18	34			8000*	
	iigiii biowii, voiy ouii to viiii, weee	35	02		00	10		ļ		1	
		" =		100		40	40			3000*	
	. ·	=	CL	15	SS	12	19			3000	
	en en en en en en en en en en en en en e	. =								10000	
	and the second of the second o		CL	16	SS	18	17			8000*	
		40—									
			CL	17	SS	18	24			7000*	
				-							
			CL	18	SS	18	23			4000*	
		45			-						
		=	CL	19	SS	18	12			2500*	
		_					-			-	,-
		· =	CL	20	SS	-18	. 13			3000*	
<u> </u>) 551.5	50-	├		├	<u> </u>					
	BORING COMPLETED										
									}		
ł											
	•	1			ļ						
								ŀ			
								1			
						-				1	
		ł									
										1	1
						L	<u> </u>	ŀ			
The st	ratification lines represent the approximate boundary lines			• 77				##OF	*Calib	rated Hand	Penetrometer matic hammer
betwe	en soil and rock types: in-situ, the transition may be gradual.					DO:	INIC C			1 OF 1 BUILD	2-19-09
	ER LEVEL OBSERVATIONS, ft V 26 WD 16 24 hr				ŀ		ING S			<u> </u>	2-19-08
	¥ 26 WD ¥ 16 24 hr ¥ 21.1 72 hr ₹					1501代	いいしょ しょ	いいにし	LIEL	,	<u> </u>

	LOG OF BORING NO. PZ-09-03 Page 1 of 2													
CLI	ENT American Electric Bours									<u>-</u>	_ 			
SIT	American Electric Power	DDG	IFO	<u> </u>										
311		PRC			C 1, ,	Ach c	nd Da	ttom	Ach	Dond C	omniev			
	New Haven, West Virginia Boring Location: 718396.378, 1736131.654		<u> </u>	2011		MPLES		, a on i	Mall	Pond C	nuhiev			
	woring Eucation, 7 10080,376, 1730131,004				J.,		Ī				<u> </u>			
GRAPHIC LOG	DESCRIPTION	ОЕРТН, ft.	USCS SYMBOL	NUMBER		RECOVERY, in.	SPT - N** BLOWS / ft.	WATER CONTENT, %	DRY UNIT WT	UNCONFINED STRENGTH, psf				
28	Approx. Surface Elev.: 596.521 ft	벒	မြ	1 5	TYPE	띭	F.S.	₹ģ	हूं हू	SE SE				
×××	FILL, silty sand with gravel, yellowish	<u> </u>	 	_	+-			1		1 20,	 			
	brown to dark brown, medium dense to dense, moist, fine to coarse grained sand, rounded gravel	=	SM	1	SS	14	30							
			SM	2	ss	18	29			 				
XXX		5-								┪				
			SM	3	ss	18	45							
		10	SM	4	SS	14	70							
		10-												
	<u>FILL</u> , silty sand with gravel, yellowish brown to dark brown, medium dense,		SM	5	SS	18	22							
	13.5 moist, fine to coarse grained sand, rounded 583	=	C'		000	40				 				
	FILL, sandy lean clay, light brown to gray, medium stiff, very moist, fine grained sand	15—	CL	6	SS	18	8							
	Y 578.5		CL.	7	ST	21.5					800 psi/30 sec			
	FILL, lean clay with sand, brown and gray	_	C!	-	-	40	20		<u> </u>	0000*				
	mottled, very stiff, moist, fine grained sand	20-	CL	8	SS	18	20		_	9000*				
			CL	9	SS	18	24			9000*				
	$\frac{23.5}{\text{FILL}}$, coal and bottom ash, black, medium	=	SM	10	SS	10	15			-				
	dense, wet, sand to gravel size particles	25		.0										
	· · · · · · · · · · · · · · · · · · ·	=	SM	11	SS	14	12							
₩	28.5 568	_	01.6	40	-	40								
\bowtie	FILL, coal and bottom ash, black to dark gray, loose, wet, fine sand to silt size particles with gravel size coal fragments	30-	SM	12	SS	18	4			 				
	31 particles with graver size coal tragitients 565.5	=	SM	13	SS	18	6			+				
****		_								_				
	Continued Next Page								<u> </u>	1	<u></u>			
betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.							**CME	140		Penetrometer matic hammer			
	TER LEVEL OBSERVATIONS, ft				- 1.	BORI	NG ST	ARTE	D		2-17-09			
	¥ 23 WD ¥ 16.8 24 hr ▼ ▼	ar	-	75	7	BORI RIG	NG C			FOREMA	2-18-09 N			
WL			_	J	•)							
-AAL	.					LOG	žΕIJ		ᇉᆝ	JOB#	N2095019			

:	LOG OF BORIN	G NO). i	PZ-	09-	03				Pá	age 2 of 2
CLIEN	IT American Electric Power										
SITE	Philip Sporn Power Plant	PRO	JEC	T							. :
JII E	New Haven, West Virginia		Sr	orn	Fly /	Ash a	nd Bo	ttom	Ash F	ond Co	omplex
	Now Haveing Woods in girls				SAN	MPLES	3			TESTS	· · ·
	•										
او			ğ			.⊑.		%	5	UNCONFINED STRENGTH, psf	
GRAPHIC LOG	DESCRIPTION	نی	USCS SYMBOI	_ ا		RECOVERY,	SPT • N** BLOWS / ft.	WATER CONTENT,	DRY UNIT WT	E E	
<u> </u>	, ·	ОЕРТН, ft.	ြိတ္ထ	NUMBER	l l	OVE.	z	咒声	3		
\$		ᇤ	ပ္တိ	3	TYPE	ü	F0	₽S	잝늏	SI SI	
5			-	Z		DZ.	oш	>0	100		
綴	FILL, coal and bottom ash, black to dark gray, loose to very loose, wet, fine sand to	=	SM	14	SS	12	5				
▩	silt size particles		JOIVI	14	33	12.					
\bowtie		35	1								
綴			SM	15	SS	18	4				
綴		-	-		_						
X	and the second s	-	SM	16	SS	18	3			 	
XX .		40 -	JOIVI	'0		10				<u> </u>	
	·	40	-						L	·	
▩	:	-	SM	17	SS	6	4	İ			11.1
▩		-							 	-	
\bigotimes_{43}	8.5 553 SANDY LEAN CLAY, dark gray, stiff to		CL	18	SS	18	9		 	500*	
	very soft, moist to wet, fine grained sand	45-							<u> </u>	ļ	
		75.7	1_							ļ-`	000 :: 1/4 5
] =	CL	19	ST	22					800 psi/15 sec
	and the second of the second o		<u></u>	<u> </u>	ļ	<u> </u>		<u> </u>		<u> </u>	
		=	CL	20	SS	18	W.H.			500*	
5 0	546.5	50	1	<u> </u>	<u> </u>	ļ	· ·		 		
	BORING COMPLETED	}		1					1	ļ ·.	
.	and the second s	i '	1							1 ·	
- 1			ĺ								
		1	1								
.		ļ		ļ						1	
			1		1						
-			1								
-				l							
								ł			i
- 1		}						ļ		-	
1	·		}	,	1	į .	-				
-								1.		-	
İ	. ·		1						Ì		
					1			}	İ		;
The st	ratification lines represent the approximate boundary lines	<u> </u>	1	!	1	<u> </u>	<u> </u>	****	*Calibr	ated Hand	Penetrometer
etwe	en soll and rock types: in-situ, the transition may be gradual.				<u> </u>	POP	ING S			SPIauto	matic hammer 2-17-09
	ER LEVEL OBSERVATIONS, ft									· · · · · ·	2-18-09
	[™] 23 WD [™] 16.8 24 hr	7		7	-		ING C				
VL S	¥ 23 WD ¥ 16.8 24 hr ¥ ¥ 16.8 24 hr	Cال	<u>"</u> [RIG		Tr		OREM/	111
Λ/Ι					•	LOG	GED		LE	IOB#	N2095019

	LOG OF BORIN	G NO	D. 1	PZ-	09-	04				P	age 1 of 2	
CLI	ENT									<u>-</u>	95 . 4.2	
	American Electric Power											
SITI	· ····································	PRO										
<u></u>	New Haven, West Virginia		_ Sp	orn				ttom	Ash		omplex	
	Boring Location: 718148.27, 1736259.447				SA	MPLES				TESTS		
6			ا پ			ċ			١.	St C		
Ĭ	DESCRIPTION		/BO			۲۲, i	نب	%	\{	A F		
유		# <u>'</u>	SY	띪		VEF	**N	ᇤ	E	쥬		
GRAPHIC LOG	•	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N** BLOWS / ft.	WATER CONTENT,	DRY UNIT WT	UNCONFINED STRENGTH, psf		
Ö	Approx. Surface Elev.: 593.692 ft	8	S	ž	7	8	유립	≶ઇ	2 8	ุรัต		
	FILL, silty sand with gravel, gray, medium dense, moist, medium to coarse grained	=					· ————			ļ		
	sand	=	SM	1	SS	17	27					
\otimes	3.5	-										
	FILL, silty sand, trace gravel and clay,	_	SM	2	SS	18	43					
	light brown, dense to medium dense, moist	5								 		
		=	SM	3	SS	18	28		-	 		
\bowtie	·		OIVI		00		20					
	<u>8 </u>	=	CL.	4	ST	20		1	-	+	800 psi/34	
	, roun out, ngm prom	_					, ,	•	l		sec	
	11 582.5	10-								1		
	FILL, well graded sand with gravel, light	-	SW	5	SS	18	21	-				
	brown, medium dense, moist, coarse to fine grained sand, rounded gravel	_	1—						}	 		
	grained saild, founded graver		SW	6	SS	12	23		├	 	ļ	
	<i>¥</i>	15—	011		00	12-	20			<u> </u>		
		"								ļ		
		=	SW	7	SS	14	26		1			
	18.5 575	-							1			
	FILL, silty sand with gravel, trace clay,	=	SM	8	SS	18	30					
2	dark brown to gray, dense, very moist, coarse to fine grained sand, rounded gravel	20-	}—		-				 	 		
	coarse to fine grained sand, rounded gravel 572.5 FILL, well graded gravel with sand, brown,	_	GW	9	SS	18	35		 			
	dense to medium dense, wet, rounded	_						ļ	<u> </u>		ļ	
	gravel <u>∇</u>	_	0)41	40	00	40	40-		-	 	ļ	
			GW	10	SS	18	16					
; 		25-										
	27 566.5] =	GW	11	SS	18	10					
	FILL, bottom ash, gray to black, medium	_	 -		-				-		 	
	dense to very loose, wet, fine sand to silt size particles	=	SP	12	SS	18	9	 -	 	 		
	,	30-						<u> </u>	├-	ļ	<u> </u>	
] =	C-	40	000	40			 	 	 	
		=	SP	13	SS	18	6					
	Continued Next Page	_										
The betw WL WL WL	stratification lines represent the approximate boundary lines							**C\A			i Penetrometer matic hammer	
Detw	een soll and rock types: in-situ, the transition may be gradual.			-		D\D	ING ST			, or aut	2-18-09	
VVA VA/I	TER LEVEL OBSERVATIONS, ft				- 1						2-10-09	
WL	¥ 23 WD ¥ 14.5 24 hr		-	1			ING CO					
WL												
WL						LOG	GED		LE .	JOB#	N2095019	

	LOG OF BORIN	G NO	ο. Ι	PZ-	09-	04				P	age 2 of 2	e
CLI	ENT American Electric Power											! `
SITI		PRO										
	New Haven, West Virginia		Sį	om				ttom	Ash	Pond Co	omplex	
	• •				SA	MPLES	<u>-</u>		Γ	T 1ES15		
ဖွ			占			Ξ̈́		٠	E	Dig.		
GRAPHIC LOG	DESCRIPTION	نے	USCS SYMBOL	~		RECOVERY in.	# #	WATER CONTENT, %	DRY UNIT WT	UNCONFINED STRENGTH, psf		
Ĭ		DEPTH, ft.	SS	NUMBER	_W	ò	SPT - N** BLOWS / ft.	FE.	N N	N N N		
GR/		DEF	กรด	Ž	TYPE	RE	SP.	§ 8	g H	N S E		
\bowtie	<u>FILL</u> , bottom ash, gray to black, medium dense to very loose, wet, fine sand to silt	=	00		00	40			<u> </u>		<u> </u>	
₩	size particles	35	SP	14	SS	18	9					
₩		33 =	60	15	00	40	-44			ļ		ł
₩		=	SP	15	SS	18	11			<u> </u>		
₩	en en en en en en en en en en en en en e		L	42	66	40	WOT		ļ	 	<u> </u>	1
₩		40-	SP	16	SS	18	WOI				· · · · · · · · · · · · · · · · · · ·	
\bowtie	41 552.5			177	00	16	9			1		1
	LEAN CLAY, dark gray, stiff, very moist to wet, high silt content	<u> </u>	CL	17	SS	18	9					ļ
				40	- C-T		ļ				800 psi/15	
		45	CL.	18	SŢ	·	·			1	sec	
		- 45 -		40	00	18	9			 		ί,
		=	CL	19	SS	18	9			<u> </u>		1
		=		100	SS	18	10		ļ	 		ı
	50 543.5	50-	CL	20	33	10	10					
	BORING COMPLETED]				İ			ı
	and the second of the second o											l
					ļ					•		l
		İ									· .	ı
							1					
		-										1
							٠.	'				
							'	ļ.				•
							1					
				<u> </u>	<u> </u>			ــنــ	10.5		I Danet	1
The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.							**CMI	Calib E 140	rated Hand I SPT auto	Penetrometer matic hammer	
_	TER LEVEL OBSERVATIONS, ft					BOR	ING ST	ARTE	D		2-18-09	I
WL	∇ aa			_		BOR	ING C	OMPL	ETEL)	2-19-09	,
WL	<u>¥</u> <u>¥</u> <u>¥</u> Eff	حال	_[Jľ		RIG			_	FOREMA		1
The betw					ľ	LOG	CED		IFI.	JOB#	N2095019	1

•	LOG OF BORIN	G N	0.	PZ-	09-	05				P	age 1 of 2
CLI	ENT American Electric Power										
SIT		PRO	JEC								
	New Haven, West Virginia	ļ	Sp	orn				ttom	Ash	Pond C	omplex
	Boring Location: 717959.368, 1735750.984				SAI	MPLES	S 		ı·	TESTS	·
			١,							8	
Ö	DESCRIPTION		8			r, in		8	₹	민준	
<u></u>	DESCRIPTION	#	χ	g		ΈR	1 1 1	ځړ	Ę	卓b	
GRAPHIC LOG		DEPTH, ft.	USCS SYMBOL	NUMBER	μ	RECOVERY, in	N."	[時	ĺΣ̈́	ŚŚ	
<u> </u>	Approx. Surface Elev.: 593.453 ft	l iii)SU	Ž	TYPE	REC	SPT - N** BLOWS / ft.	WATER CONTENT,	DRY UNIT WT	UNCONFINED STRENGTH, psf	
	0.5 ASPHALT	-	+-								
XXX	1.4 FILL, stabilized and compacted bottom 592	1 -	CM	-		4E	17		ļ. —		
	2.5 \ash \frac{59}{100}	-	SM	1	SS	15	47				
₩	FILL, silty sand with gravel, yellowish brown and gray, dense, dry to moist	=	SM	2	SS	18	25			-	
⋘	FILL, silty sand with bottom ash, trace] _ [- OIVI	~	၂၀၁	10	ر کا		L	<u> </u>	
₩	gravel, dark brown to black, medium dense,	5-	\top								
₩	6.5 moist 587 FILL, silty sand with gravel, trace bottom	} =	SM	3	SS	18	46				
₩	ash and coal, yellowish brown, dense,	-	}	 	-					 	
₩	moist, fine to coarse grained sand] =	CL	4	SS	17	43		 		
₩	9.5 Trace clay at 8.5' 584 FILL, silty sand with gravel, brown, dense,	10-				<u>'</u> _			<u></u>		·
₩	11 moist, fine-to-coarse-grained-sand 582.5										
XX	FILL, silty sand with bottom ash and	-	-∫SM	5	SS	17	50/5				
₩	gravel, reddish brown to black, dense to medium dense, moist to wet, fine to coarse	-	1	 					-		
₩	grained sand, cobbles present	-	SM	6	SS	2	50/2	==			
₩	∑	15-	1								"
₩		_	C . A	7	SS	18	32				
₩	Clay agam at 17'	[-	SM	'	33	10	32		L		
燚	Clay seam at 17'	-	\pm								
₩		-	SM	8	SS	18	15				
燚	.	20-	}	-	\vdash				 		
₩	N .	[]	SM	9	SS	18	22	 	 	+	
₩		-	<u> </u>	Ľ.				ļ	<u> </u>		
⋘		=	1		_				L_		
\bowtie		-	SM	10	SS	18	12				
₩	26 567.	25—	1							1	
XX	FILL, silty sand with bottom ash, trace	ή :	SM	11	ss	18	6			1	
₩	gravel, dark gray to black, loose to very	-	1						 	 	ļ <u>.</u>
₩	loose, wet, fine grained sand, silt size particles	=	03.4	40	00	40	-	 	-		
⋘	particles <u>T</u>		- SM	12	SS	18	8				1
₩	*	30-	+	 					1	1	
₩	·	-	SM	13	SS	18	3				
XXX		-	1-	<u> </u>	<u> </u>				-		
	Continued Next Page						<u> </u>	<u> </u>	<u> </u>		l Donatas 4
	stratification lines represent the approximate boundary lines yeen soil and rock types: in-situ, the transition may be gradual.							**CMI			l Penetrometer matic hammer
	TER LEVEL OBSERVATIONS, ft				\neg	BOR	ING ST				2-16-09
WL					ŀ		ING CO				2-16-09
		7		7	ŋ		וועט טע				
WL	¥ 29.8 20 hr ¥	U	L	J		RIG			\rightarrow	FOREMA	
WL					I	LOG	GED		LE	JOB #	N2095019

	LOG OF BO	RIN	G NC). I	PZ-(09-	05		 		Pa	age 2 of 2
CLIE											•	
SITE	American Electric Power Philip Sporn Power Plant	-	PRO.	JEC	<u>r</u>							
	New Haven, West Virginia			Sp	orn	Fly /	Ash a	ınd Bo	ttom	<u>Ash</u>	Pond Co	omplex
					<u> </u>	SA	MPLES	<u> </u>			TESTS	
				ليہ			ď				<u>8</u>	
ဗို	DESCRIPTION			MBO			۲۲, نا	نے	۲, %	TW.	A E	
阜	5253.		H, H	SYI	ĔΑ		VEF	N** /S/	吊型	S	28	
GRAPHIC LOG			DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N** BLOWS / ft.	WATER CONTENT, 3	DRY UNIT WT pcf	UNCONFINED STRENGTH, psf	
<u>o</u>			Δ)	Z	 -	oc.	. (O ED	>0	<u> </u>	- (0 (-	
▓		559		SM	14	ss	18	2		<u> </u>		
}	4.5 LEAN CLAY with SAND, light brown and	559	35								-	
	gray mottled to brown and gray mottled,		=	CL	15	SS	18	14			2000*	
	soft to stiff, wet to very moist		_							L		ļ
	en en en en en en en en en en en en en e					-	47.5	·	·	<u> </u>		800 psi/10
	Sand content increase with depth	• .	46 -	CL	16	၂၁၂	17.5					sec
	•		40-			-					F55#	
		je.	=	CL	17	SS	6	6			500*	
			_	-		Ī ,						
				CL	18	SS	18	14				
	CLAYEY SAND, reddish brown and gray	548.5	45									
	mottled, medium dense to loose, very moist		=	SC	19	SS	18	8			,	
	to wet, fine grained sand		_	}					-	-	╁	
	•		=	sc	20	SS	18	8	ļ — —	 		
	50	543.5	50-	1-		-		-		 	 	
	BORING COMPLETED									ļ		
									1			
		•	1		ļ							
							İ					
			l		Į		ļ					
.												
-												
·									[.			1
	in the second of											
}												
The	stratification lines represent the approximate boundary lines	,		<u> </u>	1	<u></u>	<u> </u>		**CM	*Calib	rated Han	d Penetrometer omatic hammer
betw	een soil and rock types: in-situ, the transition may be gradual.					<u>. </u>	BOD	ING S			, or read	2-16-09
	TER LEVEL OBSERVATIONS, ft		_					ING C) .	2-16-09
	¥ 15 WD ¥ 20 AB ¥ 29.8 20 hr ¥	ff	7	-6	71	7	RIG	WAS C			FOREM	
WL	¥ 29.8 20 hr ¥		WL	_[_		NIG				IOR#	N2095019

Well Development Log H. C. NUTTING CALCULATED BY _ CHECKED BY. DATE . 790 Morrison Road • Columbus, OH 43230 • (614) 863-3113 SCALE NTS Electric Date Wel GWELEY Prior to B.6.S. Well Development 0.01 B. G.S. sval-suffice/700 afVault (123/4" OF OF WELL RISE * Well Volume 1/2" ID Screen & Riser -Waterlo 1811 - No Sed ment Noted 5 tous Dunctorum t galls Brown heave drus potente H2O to top of underately to shippity Brown Amen well to recharge moderately silly Aza wisom grus Boun m Allow well to recharge H20 Rdg-Watere ZZ.52. 0740-1789pm 0 gals Brown moderately to shanly silly Well reary depreted Well Development Commate Bospm Puped from 1806hs 1130 Am

Well Development Log H. C. NUTTING CALCULATED BY JCE a lierracon company CHECKED BY. 790 Morrison Road • Columbus, OH 43230 • (614) 863-3113 SCALE NTS Electric Power Feb. 20 160 B.G.S. Well Developmen 0.01 3,60.6. -Suffice/Tob of Value 2 ID Suren & Riser moter in Bottom of Well modera 2/15/109 12/50

Well Development Log 2095019 (HCN) H. C. NUTTING SHEET NO. CALCULATED BY JCF A TECTACON COMPANY CHECKED BY. 790 Morrison Road • Columbus, OH 43230 • (614) 863-3113 Electric Power SCALE NTS American Feb. 18 Initial GWELEN Prior to B.6.S. Well Developmen Great-Sufflood Too of Valult 1014 Balas (135/8") For of Well Piser Vell Volume Harp Raig- Water o 16.8 BGS 1/2" ID Screen a Ruser Swacwell w/ 3'long PVC 1" & Surge Buck 2 x 0.09 = Fund 45 t gals cray heavily sited to wifine sa Fund 45 t gals cray heavily to moderatele frue sand - Sand content aiming hing 1200 pm after allowing Gray heavy to moderately silty 20 topals Suspend developmen 1691 BGS 2 20 09 Sedment in well to 48.04 W/ 5 to 10 AMS potable 1500 30 gals Evy hearty from moderately sulty Lamine whent Pump 15 table Cray implemately to sharten suffer fine sond 70 ± 18.6.5 650pm @ computur tata gulo 1110

	V	V	el		D	eV	e	lo	71	ne	n	+	L)(}			1	in	\neg	α	<u> </u>	7 1	Λ								
		C	•	н.				•							,	9	OB OB	L T NO	1	U	7	<u> </u>	7	4)F						(
	=	-		-			. /	. Tle	เเอ	con	COI	/IPA	NΥ			c	ALC	ULA	TED :		Ī	CE				ATE DATE		42	44	09		
	790 N		rison I NE	_			bus,	OH 4	1323 7 <i>(</i> *	0·16	14) E	363-3	113 PC).v.	sa	ی هسره	CAL	:Ке: Е	N BY	ß			-									
	4	۶4 ۲۰			4	1	21	_	1	_			Ţ	24	le.	W	el		N	da	11e	4		é	2.	19		,	20	29		•
	7	小					~	-1 V						1-1	۱۷.		16	1 h	E	p. l	P	ia		n					7			
		?	Z	- (9	-	U	4						W	ell	L	Ø.V	e	20	Me	X		¥		14	0		B	.61	<u>S.</u>	
		÷			7.4		- 6		- 1	. 1	1		p s					Q	ol rai	107	Gr.).).	/1	9 ;)	24	7						4
						WI.	<u> </u>		O	0	- W	टार	-12	₩2 	Y		-167142	70.	57-	Øε	<i>વન</i>	<i>ירכ</i>	V .		-							
1/1		-	77	1		7.1	21	100	7			- 				-	_	 		LIGHT	F	*	-7	Je.		Vo	d	M		K		
		- -	ø	25	O F	N.	:Pu	ili	J.	iłz	Ōβ	20)e_(Νω	er	0	14	1	34	S	-				9	Su	Ceer	1.\$	Ri	ber	-	· · · ·
		-	Α.	<u>50</u> 1.5		<u>√W</u>		101.	3	اه ا	S) V	w	11	0_	PV	25	Way	<u>U</u>	och	ر	0	25.		ගු	Ω.	14 09	150 -	3	e.	λαĺ	 	·
		- - -	٠	2	5	30	5ρ	11_	R	m	ed	1	100	121	12	M	GW	14	ren	1		M.	ν.	λoι	143	2	1		-ve	V .	ş.	
	-	-	~	3			で 列			<i>(</i>).			é			5 (Gra	ليا	rear	rle		3	X	70 l	gal	, . ,	4	6	9	Nο	0	
		1		4	Hir	فك	H	20	مد		124	0.5	av	L		ļ	al	-	Coc		Ľ	J.					WAY.	tel		-		
		1			Me	V	12		W				ed	عر	21	10	_	ļ.,											1			
		-	i >	3		<u>_ار</u> ۲۱۲		pn		2.	W	pe	L.	2	5	9	W.	<u>_</u>	Uti	Q)	By	W	~0	eve	<u>J</u> e	ly	40	SI	Øh.	Y		
	<u> </u>		B	4			4	5	m.	7							alc:		ti	9	ai	5	ug	wt	1	5,1	4	k	14	D	ļ	,
		+	-	ļ <u>.</u>	M		1 .	1 1	! r	7.00	٠	Sa	<u> ~{</u>)	-	-	-	-	-	-		-	_				-	-	 	ļ	 	,
		+	Ī		12	0	12	M	L	75	ip	n	l	Na	te	1	¥ [狂	5	E	4	1					_		-	-		
				-	-	_	_							-		+	-	\vdash	-	-	-	=	-		-		7				<u> </u>	
				_			Z	9	0		To	a	ex	W.	سمتكات	Hi			m			Fi	M	1.	Je	N		_	-	-	┼-	-
	-	-	-	_	-	-		-		-	4	<u>ur</u>	W)	1		ev		Of	m	451			_	_		-					上]
				ļ	ļ.,	-	-									/	np	101	1		12	6		-	ļ		-	-	+-	-	-	
	-	-	-	-	-	 		-	-	TU.	12	my	M	an.		YUY	14	الط	f	-			m	1					-		1	1
				<u> </u>					_			-					-	-			-			_	-	-	-		-	-	+	-
		+	-	\vdash	+	-	-	-	-	-	ļ	-	-	+	-	-	$\frac{1}{1}$	\perp	-		1				<u> </u>			_	1		1	12
		\prod			T	2	lin.	10	1	Ne			L	19		g-	1	b .	G.S	5.	-	-	-	-	-	-	-	_	+	+	+-	_

Well Development Log H. C. NUTTING CALCULATED BY JCE CHECKED BY. 790 Morrison Road • Columbus, OH 43230 • (614) 863-3113 Electric Powerscale NTS Installed: Feb. GWELEN Prior 10 15. B.6.S. Well Development 0.01 3, 4,6. gral-sufflue/Top of Vavilt 0.2' B.G. 5- (21/2) Top of well Piser * Well Volume * 1/2" ID Screen & Riser 20 pm Tentral Hap Redy - Water 015.71 Blas urge wall wil 3 low PVC 1" & surge black Institute Punping sited to of fine sand Brown 624 Min. Levelopment volume Sedement on well to 46,5! = 1395 Hea well at 510 10 grallous potable notable H20 to suspend dediment Pesine Pynipula, Prinsed 15 = gallons Brong gray heavily sifted thro Pumped 20 4 gallors Brawn to Cugustionoun u Hro pringed 20 t galling light thrown makerately to slightly 5th thow trace Rue Sans Pumped 15 gallows light lovery stightly silte 429 pm - 432 pm Hab M trace fine sound Heo tevel myresteafely after pumanos 5 to 10 gallow Headded to well aline jetting. Rumped from Wet during development 90 Fgals, Total H20 om Developmen

				TERRA	ON PROJECT	NO. <u>N2095019</u>	<u> </u>	
PROJECTSPORN_FLY_ASH_AND_BOTTOM_ASH_POND_C	COMPLEX				· SUMM	ARY ELEVATIONS		
COORDINATES)(NGVD29	WV N)			ı	(FT. NGVD)		
DATE INSTALLED 02/21/09					PIEZON	METER NO. PZ	-09-01	_
	nπ .					DATUM PT		ŀ
REF. DATUM F TOP OF PROTECT	IVE							
VAULT/GROUND SURFA	ICE .						مغدد مناه	
GROUND SURFACE/TOP OF PAD		 	 .	~/ <i>~</i> //		GRADE 0'	(600.82	'
	1'		لبر	.(()()()	(K/K/);	DEP1	TH (ELEV.)	
O-\			-X-	-(8)	2 .			
		1	!		BENT	TOP OF 4	0' (596.8	32')
						TOP OF 50'	** .	
		$ ^{\bigcirc} $			GRAVI	TOP OF 5.0'	(595.82)
<u> </u>		-		منسيد کا د				
GROUT SEAL CENENT PENTONITE								
MATERIAL: CEMENT BENTONITE	6				. 4			
BENTONITE SEAL BENTONITE CHIPS MATERIAL:					TOP	0F	0011	A
SCREEN 0.010" SLOT			<u> </u>		SCRE	EN <u>6.0 (334.</u>		
					BOTTOM SCRE	OF EN 50.3' (550).52')	
GRAVEL PACK #5 QUARTZ SAND MATERIAL:	77	<i>Y</i>			•			
BOREHOLE DIAMETER 7" 6" MIN. ————————————————————————————————————			2' MAX.	•				
1.92" DIA. PVC CASING (O.D.)		-			BOTT	OM OF MA	_	
	· 3					K SEC. N/A	1	
CONCRETE PAD 3'x3'x8" THICK (MIN.)			÷	•	BOTT	OM OF 54.0	/r 40 BB	
PROTECTIVE STEEL H2 RATED VAULT COVER		٠.				PACK	(549.82	
	4				вотто	M OF		
		1 . [BORE	HOLE 51.0' (549.82')	
		1		•				l
		-						
			GRAVEL		•			
and the state of t	<u> </u>			SCREEN				
						SCALE:	NTS	.
OTE: DEPTHS OF MATERIALS ARE TAKEN FROM TOP OF VA DEOTECHNICAL ENGINEERING SECTION	ULI/GROU	SUF		REVISION		1		
CIVIL DESIGN STANDARD		·			0	OBSER'		·
NPP'D.	DR.			С.К.	DATE			
AMERICAN ELECTRIC POWER SERVICE CORP.					•	CDS-04A	SH.	- 1

,						
			TERRAC	ON PROJECT	NO. N2095019	
PROJECT <u>SPORN FLY ASH AND BOTTOM ASH POND</u>	COMPLEX		•	SUMM	ARY ELEVATIONS	. !
COORDINATES 720305.06 N/1735649.89 E (NAD :	27)(NGVD29 W	∨ N)			(FT. NGVD)	
OGG/MINITED						
DATE INSTALLED <u>02/20/09</u>			•	PIEZOM	IETER NO. PZ-09	-02
REF. DATUM	DT •			REF.	DATUM PT.	
TOP OF PROTE	CTIVE					
VAULT/GROUND SUR	FACE		•			
GROUND SURFACE/TOP OF PAD					GRADE 0' (60	1.35')
GROUND SORFACE/TOP OF PAD	7 05!	- P	T78888			-
	0.5		, ,		DEPTH (I	ELEV.)
()—\		 			TOP OF 201	
				BENTO	TOP OF 2.0' (599.35')
					TOO OF	
		① ·		GRAVE	TOP OF 3.5' (59	7.85')
(S)——•			-		•	Ì
1 GROUT SEAL CEMENT BENTONITE						
2 BENTONITE SEAL BENTONITE CHIPS		$ \rightarrow $				
MATERIAL: BENTONITE CHIPS				TOP-(OF-	
3 SCREEN 0.010" SLOT				SCRE		
SIZE: U.O10 SEO1				BOTTOM (OF 5M 35.0' (566.35'	,
4 GRAVEL PACK #5 QUARTZ SAND		77_		SUNE	EIV	
5 BOREHOLE DIAMETER 7"		2' MA)	· (.			
6" MIN						
6 1.92" DIA. PVC CASING (O.D.)				BOTTO	OM OF	į
	3			BLANI	SEC. N/A	
7 CONCRETE PAD 3'x3'x8" THICK (MIN.)						
				BOTTO GRAVEL	OM OF PACK36.0* (56	35.35')
8 PROTECTIVE STEEL H2 RATED VAULT COVER				•		
	4			вотто	M OF 50.0' (551.	35')
·				BORE	HOLE 50.0 (551.	33 /
. •						
				GROU	TED 36.0' TO 50.0	
		GRAVEL	- DVCh			
·			SCREEN			
	L		. .			
NOTE: DEPTHS OF MATERIALS ARE TAKEN FROM TOP OF	VAUI T/GROUM	SURFACE			SCALE: NTS	,
GEOTECHNICAL ENGINEERING SECTION			REVISION			
CIVIL DESIGN STANDARD				0	OBSERVAT WELL	IUN
APP'D.	DR.		c.ĸ.	DATE		
AMERICAN ELECTRIC POWER SERVICE CORP.	<u></u>				CDS-04A S	H.

AMERICAN ELECTRIC POWER SPORN FLY ASH AND BOTTOM ASH POND COMPLEX GEOLOGIST/ENGINEER:
LEWIS EPLIN H.C. NUTTING CO.

		TERRACON PROJECT NO. N2095019
PROJECT <u>SPORN FLY ASH AND BOTTOM ASH POND</u>	COMPLEX	SUMMARY ELEVATIONS
COORDINATES	27)(NGVD29 WV N)	(FT. NGVD)
•		PIEZOMETER NO. PZ-09-03
DATE INSTALLED 02/18/09	•	
REF. DATUM TOP OF PROTE		REF. DATUM PT.
VAULT/GROUND SUF		
		GRADE 0' (596.52')
GROUND SURFACE/TOP OF PAD		T-44444444
		DEPTH (ELEV.)
<u> </u>		—
		TOP OF 4.0' (592.52')
	① ·	TOP OF GRAVEL PACK 5.0' (591.52')
		GRAVEL PACK
(S)	1 1 1 -	
1 GROUT SEAL CEMENT BENTONITE		
2 BENTONITE SEAL BENTONITE CHIPS	[-]®	
		TOP-OF SCREEN <u>6.0' (590.52')</u>
3 SCREEN 0.010" SLOT SIZE:		
4 GRAVEL PACK #5 QUARTZ SAND		BOTTOM OF SCREEN 50.4' (546.12')
WINGE COURSE	2' MA	x.
5 Borehole Diameter 7" 6" Min		
6 1.92" DIA. PVC CASING (O.D.)		BOTTOM OF N/A
7 CONCRETE PAD	3	BLANK SEC: N/A
7 CONCRETE PAD 3'x3'x8" THICK (MIN.) DIMENSIONS:		BOTTOM OF 51.0' (545.52')
8 PROTECTIVE STEEL H2 RATED VAULT COVER		GRAVEL PACK 51.0 (343.32)
	4	BOTTOM OF 51.0' (545.52')
		BOREHOLE
·		_
		l Pack Screen
·	PETO!	- Joneth
NOTE: DEDTHE OF HATCHIES ARE TAVEL FROM TOD OF	VALUET/COOLINIO -CHIDEACE	SCALE: NTS
NOTE: DEPTHS OF MATERIALS ARE TAKEN FROM TOP OF GEOTECHNICAL ENGINEERING SECTION	AUDITA DIVIDINA SOULACE	REVISION
CIVIL DESIGN STANDARD		WELL
APP'D.	DR.	C.K.
AMERICAN ELECTRIC POWER SERVICE CORP.	<u> </u>	CDS-04A SH.
		GEOLOGIST/ENGINEER:

AEPSPP003377

H.C. NUTTING CO.

LEWIS EPLIN

		Ī	ERRACON PROJECT	NO. N2095019	
PROJECT <u>SPORN FLY ASH AND BOTTOM ASH PONI</u>	D COMPLEX		SUMM	ARY ELEVATIONS (FT. NGVD)	
COORDINATES 718150.72 N/1736258.64 E (NAD	27)(NGVD29 WV	N)		(11. 11000)	
DATE INSTALLED <u>02/19/09</u>			PIEZON	METER NO. PZ-	09-04
REF. DATUM TOP OF PROTE VAULT/GROUND SUF	CTIVE		REF.	DATUM PT	
GROUND SURFACE/TOP OF PAD				GRADE . 0' (593.69')
CHOOKE SOME ACE, FOR SIX PROPERTY OF	0.5	了了《			
Ø-\					I (ELEV.)
			BENTO	TOP OF 3.5	' (590.19')
			GRAVE	TOP OF EL PACK <u>4.5' (</u>	589.19')
⑤	- -	-			
1 GROUT SEAL CEMENT BENTONITE	6			-	
2 BENTONITE SEAL BENTONITE CHIPS	Z Z		TOP (05	
3 SCREEN 0.010" SLOT				OF 5.5' (588.19	
4 GRAVEL PACK #5 QUARTZ SAND			BOTTOM (SCREI	OF EN <u>49.8' (543.</u> 8	89')
5 BOREHOLE DIAMETER 7" 6" MIN.		2' MAX.			
6 1.92" DIA. PVC CASING (O.D.)			вотто	OM OF N/A	
7 CONCRETE PAD 3'x3'x8" THICK (MIN.)	3)		•	K SECN/A	·
8 PROTECTIVE STEEL H2 RATED VAULT COVER			BOTTO GRAVEL	OM OF PACK 51.0'	(542.69')
8 PROTECTIVE SILEE H2 RATED VAULT COVER	4		BOTTO BORE	M OF HOLE 51.0' (54	12.69')
		GRAVEL PACK	.		
		BELOW SCRE			
NOTE: DEPTHS OF MATERIALS ARE TAKEN FROM TOP OF	VAULT/GROUND	SURFACE		SCALE: 1	NTS
GEOTECHNICAL ENGINEERING SECTION CIVIL DESIGN STANDARD			SION 0	OBSERV WEL	
APP'D.	DR.	с.к.	DATE	1	

AMERICAN ELECTRIC POWER SPORN FLY ASH AND BOTTOM ASH POND COMPLEX

GEOLOGIST/ENGINEER: LEWIS EPLIN H.C. NUTTING CO.

TERRACON PROJECT NO. N2095019 PROJECT SPORN FLY ASH AND BOTTOM ASH POND COMPLEX SUMMARY ELEVATIONS (FT. NGVD) (15,257) COORDINATES 717961.56 N/1735749.39 E (NAD 27)(NGVD29 WV N) PIEZOMETER NO. PZ-09-05 DATE INSTALLED ____02/17/09___ REF. DATUM PT. REF. DATUM PT.: TOP OF PROTECTIVE VAULT/GROUND SURFACE GRADE 0' (593.45') GROUND SURFACE/TOP OF PAD 0.2 DEPTH (ELEV.) TOP OF BENTONITE SEAL 3.2' (590.25') 1 TOP OF 4.2' (589.25') GRAVEL PACK . GROUT SEAL CEMENT BENTONITE MATERIAL: 6 BENTONITE SEAL BENTONITE CHIPS TOP OF 5.2' (588.25' SCREEN SCREEN 0.010" SLOT SIZE: BOTTOM OF 50.2' (543.25') SCREEN _ GRAVEL PACK #5 QUARTZ SAND MATERIAL: 2' MAX. BOREHOLE DIAMETER 7" 6" MIN. 1.92" DIA. PVC CASING (O.D.) BOTTOM OF BLANK SEC. N/A CONCRETE PAD 3'x3'x8" THICK (MIN.) 7 DIMENSIONS: ___ BOTTOM OF 51.0' (542.45') GRAVEL PACK PROTECTIVE STEEL H2 RATED VAULT COVER 4 BOTTOM OF BOREHOLE ____51.0' (542.45') GRAVEL PACK BELOW SCREEN SCALE: NTS NOTE: DEPTHS OF MATERIALS ARE TAKEN FROM TOP OF VAULT/GROUND SURFACE REVISION GEOTECHNICAL ENGINEERING SECTION **OBSERVATION** 0 CIVIL DESIGN STANDARD WELL DATE C.K. DR. CDS-04A SH. AMERICAN ELECTRIC POWER SERVICE CORP. GEOLOGIST/ENGINEER: AMERICAN ELECTRIC POWER SPORN FLY ASH AND BOTTOM ASH POND COMPLEX

AEPSPP003379

LEWIS EPLIN

H.C. NUTTING CO.

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hallous Chama Assessed
ST:	Thin Wolled Take 200 D	no.	Hollow Stem Auger
	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted		•
D D	thing Campiel "2.42" i.b., 3" O.b., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	DD.	. •
BS:		RB;	Rock Bit
DO.	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud Rotary
	· •	WVD.	Avasu noming of Mind KotstA

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

ľ			· ····		
WL: WCI:	Water Level Wet Cave in	WS: WD:	While Sampling While Drilling	N/E:	Not Encountered
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts-if-they-are slightly-plastic-or-non-plastic.—Major constituents may be added as modifiers and minor-constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE: DENSITY OF COARSE-GRAINED SOILS

Unconfined Compressive Strength, Qu, psf <500 500 - 1,000 1,000 - 2,000 2,000 - 4,000 4,000 - 8,000	<u>Standard</u> <u>Penetration or</u> <u>N-value (SS)</u> <u>Blows/Ft.</u> 0 - 1 2 - 4 4 - 8 8 - 15 15 - 30	Consistency Very Soft Soft Medium Stiff Stiff Very Stiff	Standard Penetration or N-value (SS) Blows/Ft. 0 - 3 4 - 9 10 - 29 30 - 49 > 50	Relative Density Very Loose Loose Medium Dense Dense
8,000 = 8,000 8,000+	15 - 30 > 30	Very Stiff Hard	> 50	Very Dense

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents	Percent of Dry Weight
Trace	< 15
With	15 - 29
Modifier	> 30

RELATIVE PROPORTIONS OF FINES

Percent o
Dry Weigi
<5
5 – 12
> 12

GRAIN SIZE TERMINOLOGY

Major Component of Sample	Particle Size
Boulders Cobbles	Over 12 in. (300mm)
	12 in. to 3 in. (300mm to 75 mm)
Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
Sand	#4 to #200 sieve (4.75mm to 0.075mm)
Silt or Clay	Passing #200 Sleve (0.075mm)

PLASTICITY DESCRIPTION

<u>Term</u>	Plasticity Index	
Non-plastic	0	
Low	1-10	
Medium	11-30	
High	> 30	

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria f	or Assigning Group Symbo	ols and Group Names Usin	g Laboratory Tests*	Soil Classification	
•				Group Symbol	Group Name ⁸
Coarse Grained Soils	Gravels	Clean Gravels	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel*
More than 50% retained	More than 50% of coarse fraction retained on No. 4 sieve	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
on No. 200 sieve			Fines classify as ML or MH	GM	Silty gravel ^{F.o. H}
011 HO. 200 310 W		than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G H}
Sands 50% or more of coarse fraction passes No. 4 sieve	Clean Sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^ε	sw	Well-graded sand	
		Less than 5% fines ^b	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
		Sands with Fines More than 12% lines ^b	Fines classify as ML or MH	SM	Silty sand ^{6 H.I}
			Fines Classify as CL or CH	sc	Clayey sand ^{с.н,}
Fine-Grained Soils 50% or more passes the No. 200 sieve Silts and Clays Liquid limit less-than 50	Silts and Clavs inorganic	inorganic	PI > 7 and plots on or above "A" line	CL	Lean clay ^{KLM}
		_	Pl <4 or plots below "A" line"	ML	SiltKLM
		organic	Liquid limit - oven dried <0.75	OL.	Organic clay ^{KLMH}
			Liquid limit - not dried		Organic silt ^K Luo
	Silts and Clays	inorganic	Pl plots on or above "A" line	СН	Fat clay ^{KLM}
	Liquid limit 50 or more		PI plots below "A" line	МН	Elastic Silt ^{K.L.M}
		organic	Liquid limit - oven dried <0.75		Organic clay ^{kLMP}
			Liquid limit - not dried	011	Organic silt ^{KLMQ}
Highly organic soils	Drima	rily organic matter, dark in co	olor, and organic odor	PT	Peat

^Based on the material passing the 3-in. (75-mm) sieve

If fleld sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^CGravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with clay.

OSands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

ECu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

F If soil contains ≥ 15% sand, add "with sand" to group name.

^GIf fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

Hif fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 L If soil contains $\geq 30\%$ plus No. 200 predominantly sand, add "sandy" to group name.

Mif soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^NPl≥4 and plots on or above "A" line.

^oPI < 4 or plots below "A" line.

PPI plots on or above "A" line.

^QPI plots below "A" line.

Terracon

Form 111-6/98

FIELD DATA COLLECTED BY: GEO/ENVIRONMENTAL ASSOCIATES, INC.

DATED: DECEMBER 2009 & JANUARY 2010

Geo/Environmental Associates, Inc.

Boring No. <u>GA-1A</u>

Page <u>1</u> Of <u>2</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-10-09	Drilling Contractor: Horn and Associates
Finish Date: 12-10-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George
Location: FAP – East Dike section K-K	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 619.13' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: woven fabric approx 0.5' bgs	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 719696.84 E 1736037.33	Total Depth of Boring: 69.0'

DEPTH	(FEET)	SAMPLE NOS., & SPLIT		BLOW COUNTS AND COMMENTS
FROM	то	SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	
2.0	2.5	S-1 / 0.4'	Sand, gravel, brown, very dense, damp	50 / 0.5'
4.0	4.6	S-2 / 0.5'	Sand, gravel, brown, very dense, damp	35-50 / 0.1'
6.5	7.0	S-3 / 0.4'	Sand, gravel, brown, very dense, damp	50 / 0.5'
9.0	10.5	S-4 / 0.4'	Sand, gravel, brown, very dense, damp	33-37-31
11.5	13.0	S-5 / 1.4'	Sand, gravel, brown, very dense, damp	35-36-29
14.0	14.5	S-6 / 0.4'	Sand, gravel, brown, very dense, damp	50 / 0.5
16.5	18.0	S-7 / 1.5'	Sand, clay, brown, medium dense, damp	17-17-13
19.0	20.5	S-8 / 1.5'	Sand, clay, brown, medium dense, damp	20-12-11
20.5	22.0	S-9 / 1.3'	Sand, clay, brown, medium dense, damp	11-14-15
22.0	23.5	S-10 / 1.5'	0 -1.1' Sand, clay, brown / 1.1-1.5' Bottom Ash, sand, black, dense, damp	23-26-20
23.5	25.0	S-11 / 1.5'	Sand, bottom ash streaks, clay, brown streaked black, dense, damp	17-20-17
25.0	26.5	S-12 / 1.5'	Bottom Ash, fly ash, grey-black, dense, moist (approximate start of fly ash)	17-16-16

Geo/Environmental Associates, Inc.

Project Name/ Job Number:

09-387

Boring Log No.:

GA-1A

Page

of

DEPTH (FEET)		SAMPLE NO.,			
FROM	TO	SAMPLE INTERVAL & SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS	
26.5	27.2	ST-1 / 0.7'	Fly Ash, bottom ash, grayish black, wet	W/L ≈ 27' bgs	
28.5	31.0	ST-2 / 2.66'	Fly Ash, gray, wet		
31.0	32.5	S-13 / 1.5'	Fly Ash, gray, loose, wet	3-2-3	
32.5	35.0	ST-3 / 2.50'	Fly Ash, gray, wet		
35.0	36.5	S-14 / 1.5°	Fly Ash, gray, loose wet	3-3-3	
36.5	39.0	ST-4 / 2.60'	Fly Ash, gray, wet		
39.0	40.5	S-15 / 1.5°	Fly Ash, gray, loose, wet	2-3-2	
40.5	43.0	ST-5 / 2.55'	Flý Ash, gray, wet		
43.0	44.5	S-16 / 1.5'	Fly Ash, gray, loose, wet	1-3-3	
44.5	47.0	-ST-6 / 2.55°	Fly Ash, gray, wet		
47.0	48.5	S-17 / 1.5'	Fly Ash, gray, loose, wet	5-4-4	
48.5	51.0	ST-7/2.41'	Fly Ash, gray, wet		
51.0	52.5	S-18 / 1.5'	Fly Ash, gray, loose, wet	7-2-4	
52.5	55.0	ST-8 / 2.55'	Fly Ash, gray, wet		
55.0	56.5	S-19 / 1.5'	Fly Ash, gray, loose, wet	1-3-4	
56.5	59.0	ST-9 / 2.37'	Fly Ash, gray, wet		
59.0	60.5	S-20 / 1.5'	0-1.0' Fly Ash, clay, gray 1.0-1.5' Clay, silt, brown, stiff, wet (approximate end of fly ash)	3-4-8	
60.5	63.0	ST-10 / 2.49°	Clay, silt, brown		
69.0	69.0 70.5 S-21 / 1.5'	S-21 / 1.5'	Silt, clay, brown, very stiff, moist-wet	6-8-8	
			Set Inclinometer at ≈ 69' bgs. Back fill with grout mix: approx 1 unit pcc, 1 unit bentonite, 6.25 units water by weight.		

Boring No. <u>GA-1B</u>

Page <u>1</u> Of <u>1</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-11-09	Drilling Contractor: Horn and Associates
Finish Date: 12-14-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: FAP – East Dike section K-K	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 619.04' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: woven fabric approx 0.5' bgs	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 719704.38 E 1736031.96	Total Depth of Boring: 69.0'

DEPTH (FEET) SAMPLE NOS.,		1		
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
9.0	10.5	S-1 / 1.2'	Sand, gravel, brown, very dense, damp	32-37-35
19.0	20.5	S-2 / 1.5'	Sand, clay, brown – mottled black, medium dense, damp	12-7-9
29.0	30.5	S-3 / 1.5'	Fly Ash, gray, loose, wet	5-4-5
39.0	40.5	S-4 / 1.5'	Fly Ash, gray, very loose, wet	0-1-0
49.0	50.5	S-5 / 1.5'	Fly Ash, gray, loose, wet	2-3-5
59.0	60.5	S-6 / 1.5'	0-1.0 Fly Ash, gray, very loose, wet 1.0-1.5 Clay, silty, brown, soft, damp-moist	0-0-3
69.0	70.5	S-7 / 1.5°	Clay, silty, brown, very stiff, damp-moist	9-10-10
			Set Inclinometer at ≈ 69' bgs. Back fill with grout mix: approx 1 unit pcc, 1 unit bentonite, 6.25 units water by weight.	

Boring No. <u>GA-1C</u>

Page <u>1</u> Of <u>1</u>

PROJECT NO: 09-387
Drilling Contractor: Horn and Associates
Driller: Tom Leininger
Helper: Robert, George, Jared
Drill Type: Diedrich D120 Truck Mounted
AEP Contacts: Mark King and Ginger MacKnight
Thickness of Soil:
Depth Drilled In Rock:
Total Depth of Boring: 79.0'

DEPTH (FEET) SAMPLE NOS.,		,		DY ONL COVINED
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
9.0	10.5	S-1 / 1.4'	Sand, gravel, brown, very dense, damp	29-30-31
19.0	20.5	S-2 / 1.5'	Sand, clay, brown streaked black, medium dense, damp-moist	9-11-7
29.0	30.5	S-3 / 1.5°	Fly Ash, grayish black, medium dense, wet	9-8-7
35.0		Vain Shear 1	30 lb-ft / 60° 10 lb-ft / 360°	
39.0	41.5	ST-1 / 0.98'	Fly Ash, grey, wet	
42.5		Vane Shear 2	100 lb-ft / 90° 60 lb-ft / 360°	
50.0'		Vane Shear 3	40 lb-ft / 60° 20 lb-ft / 360°	
59.0	60.5	S-4 / 1.5'	Fly Ash, clay, organic material, silty, brownish black, soft, moist-wet	1-1-3
69.0	71.5	ST-2 / 2.58'	Clay, silty, sandy, brown, moist-wet	
79.0	80.5	S-5 / 1.5'	Clay, silty, brown, stiff, wet	5-8-7 1.75 tsf
	···································		Set Inclinometer at ≈ 79' has Rack fill with arout mix; approx 1	

Boring No. <u>GA-1D</u>

Page <u>1</u> Of <u>2</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-16-09	Drilling Contractor: Horn and Associates
Finish Date: 12-17-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: FAP – East Dike section K-K	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 619.21' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: woven fabric approx 0.5' bgs	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 719729.38 E 1736015.38	Total Depth of Boring: 59.0'

DEPTH	(FEET)	SAMPLE NOS., & SPLIT	PI O	BLOW COUNTS
FROM	то	SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	AND COMMENTS
9.0	9.4	S-1 / 0.3'	Sand, gravel, brown, very dense, damp	50 / 0.4
19.0	20.5	S-2 / 1.4'	Sand, clay, brown streaked black, medium dense, damp-moist	21-14-12
29.0	30.5	ST-1 / 1.17'	Fly Ash, gray, wet	
32.5		Vane Shear 1	10 lb-ft / 60° 10 lb-ft / 360°	
39.0	41.5	ST-2 / 2.48'	Fly Ash, gray, wet	333333
42.5		Vane Shear 2	30 lb-ft / 60° 20 lb-ft / 360°	
50.5		Vane Shear 3	30 lb-ft / 60° 20 lb-ft / 360°	
59.0	61.5	ST-3 / 2.36'	Fly Ash, clay, grayish black	

Geo/Environmental Associates, Inc. Project Name/ Job Number: 09-387 Boring Log No.: GA-1D Page 2 of 2 **DEPTH (FEET)** SAMPLE NO., **SAMPLE BLOW COUNTS** INTERVAL & SOIL/BEDROCK DESCRIPTION AND COMMENTS FROM TO SPLIT SPOON RECOVERY Set Piezometer at approximately 60' bgs 0 0.5 Flush Mount Piezometer Cover 23.0 0.5 Grout 25.0 23.0 Bentonite 25.0 60.0 Prepak Screen Backfilled With Sand 60.0 61.5 Bentonite mix Water Elevation December 17, 2009: 25.2' bgs Water Elevation January 8, 2010: 25.6' bgs

Boring No. <u>GA-2</u>
Page <u>1</u> Of <u>2</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-17-09	Drilling Contractor: Horn and Associates
Finish Date: 12-18-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: FAP – East Dike section M-M	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 619.76' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: woven fabric approx 0.5' bgs	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 721075.13 E 1735262.04	Total Depth of Boring: 69.0'

DEPTH	(FEET)	SAMPLE NOS.,		DI ONI GOVINIE
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
4.0	4.5	S-1 / 0.3'	Sand, gravel, brown, very dense, damp	50 / 0.5'
9.0	9.8	S-2 / 0.5'	Sand, gravel, brown, very dense, damp-moist	35-50 / 0.3'
14.0	14.8	S-3 / 0.6'	Sand, gravel, clay, brown, very dense, damp-moist	29-50 / 0.3'
19.0	20.5	S-4 / 1.4'	Sand, brown, dense, damp	27-22-18
24.0	25.5	S-5 / 1.5'	Sand, bottom ash, black, dense, damp	22-18-14
29.0	30.5	S-6 / 1.5'	Fly Ash, gray, loose, moist-wet	2-4-5
34.0	35.5	S-7 / 1.5°	Fly Ash, gray, very loose, wet	2-1-2
39.0	41.5	ST-1 / 1.10'	Fly Ash, gray, wet	
44.0	45.5	S-8 / 1.5'	Fly Ash, gray, very loose, wet	1-0-2
49.0	50.5	S-9 / 1.5'	Fly Ash, gray, very loose, wet	1-0-0
54.0	55.5	S-10 / 1.5'	Fly Ash, gray, very loose, wet	0-0-0
59.0	61.5	ST-2 / 2.50'	Fly Ash at top of sample – Transition to Silt, clay, sand, brown, moist	

Geo/Environmental Associates, Inc. Project Name/ Job Number: 09-387 Boring Log No.: GA-2 of **DEPTH (FEET)** SAMPLE NO., **BLOW COUNTS** SAMPLE AND COMMENTS INTERVAL & SOIL/BEDROCK DESCRIPTION FROM TO SPLIT SPOON RECOVERY S-11 / 1.5' 6-9-8 64.0 65.5 Sand, clay, brown, medium dense, moist 69.0 71.5 ST-3 / 1.70° Sand, clay, brown, some gravel at bottom of tube Backfill hole with grout mix

Boring No. <u>GA-3</u>
Page <u>1</u> Of <u>2</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-17-09	Drilling Contractor: Horn and Associates
Finish Date: 12-17-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: FAP – East Dike section L-L	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 619.83' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: woven fabric approx 0.5' bgs	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 720258.79 E 1735560.40	Total Depth of Boring: 79.0'

DEPTH	(FEET)	SAMPLE NOS.,		
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
4.0	4.5	S-1 / 0.4'	Sand, gravel, dark brown, very dense, damp	50 / 0.5'
9.0	10.5	S-2 / 1.1'	Sand, gravel, brown, dense, moist	37-31-17
14.0	15.5	S-3 / 1.4'	Sand, clay, brown, dense, damp	23-24-12
19.0	20.5	S-4 / 1.5'	Clay, sand, silt, brown, very stiff, moist-wet	14-13-12 2.5 tsf
24.0	25.5	S-5 / 1.5'	Clay, sand, silt, brown, hard, wet	22-18-14 2.25 tsf
29.0	31.5	ST-1 / 1.51'	Fly Ash, gray	
34.0	35.5	S-6 / 1.5'	Fly Ash, gray, medium dense, wet	6-7-8
39.0	41.5	S-7 / 1.5'	Fly Ash, gray, very loose, wet	3-0-1
44.0	45.5	S-8 / 1.5'	Fly Ash, gray, loose, wet	0-2-3
49.0	51.5	ST-2 / 2.34'	Fly Ash, gray	
54.0	55.5	S-9 / 1.5'	Fly Ash, gray, loose, wet	5-5-5
59.0	60.5	S-10 / 1.5'	0.0-0.1' Ash, clay, gray 0.1-1.5' Clay, silty, sandy, brown, very stiff, moist-wet	7-10-14

Geo/Environmental Associates, Inc. Project Name/ Job Number: 09-387 Boring Log No.: GA-3 Page 2 of 2 DEPTH (FEET) SAMPLE NO., **SAMPLE BLOW COUNTS** AND COMMENTS **INTERVAL &** SOIL/BEDROCK DESCRIPTION **FROM** TO SPLIT SPOON RECOVERY 64.0 65.5 S-11 / 1.5° 8-9-13 Clay, silt, sand, brown, very stiff, moist S-12 / 1.5° 8-9-9 69.0 70.5 Clay, silt, reddish brown, very stiff, moist 74.0 75.5 S-13 / 1.5' 0-2-2 Clay, sand, silt, brown, soft, moist-wet 79.0 81.5 ST-3 / 2.27' Clay, sand, silt, brown Backfill hole with grout mix

Boring No. <u>GA-4A</u>

Page <u>1</u> Of <u>2</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-14-09	Drilling Contractor: Horn and Associates
Finish Date: 12-15-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: BAP – West Dike section A-A	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 593.40' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: asphalt surface approx 0.5' thick	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 717984.64 E 1735736.82	Total Depth of Boring: 49.0'

DEPTH	(FEET)	SAMPLE NOS.,		DI ONI COLINER
FROM	то .	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
2.0	2.3	S-1 / 0.3'	Sand, gravel, brown, very dense, damp	50 / 0.3'
4.0	5.5	S-2 / 0.9'	Sand, gravel, clay, brown, medium dense, damp	13-12-13
6.5	8.0	S-3 / 1.5'	0-1.0' Sand, gravel, brown / 1.0-1.5 Bottom Ash, grey-black, dense, damp	33-22-17
9.0	10.5	S-4 / 1.4'	0-1.1' Sand, gravel, bottom ash, brown-black / 1.1-1.4' Sand, clay, dense, damp	25-30-20
11.5	11.9	S-5 / 0.4'	Bottom Ash, clay, black, very dense, damp	50 / 0.4'
14.0	15.5	S-6 / 1.5'	0.5 Sand, gravel, brown, medium dense, damp 0.5 Bottom Ash, clayey, grayish black, medium dense, moist 0.5 Sand, clay, brown, medium dense, wet	19-14-14 W/L ≈ 15' bgs
16.5	18.0	S-7 / 1.4'	Sand, clay, gravel, dark brown, medium dense, wet	15-14-8
19.0	20.5	S-8 / 1.5°	Sand, clay, dark brown, medium dense, wet	18-15-14
20.5	22.0	S-9 / 1.3'	Sand, bottom ash, gravel, brown-black, medium dense, moist	13-11-10
22.0	23.5	S-10 / 1.5°	Sand, brown, medium dense, wet	5-11-12
23.5	25.0	S-11/1.5°	Sand, clay, brown-black, loose, wet	3-2-3

Project Name/ Job Number:

09-387

Boring Log No.:

GA-4A

Page

of

DEPTH	(FEET)	SAMPLE NO.,		DI OW COUNTS
FROM	то	SAMPLE INTERVAL & SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
26.5	28.0	S-13 / 1.5'	Fly Ash, bottom ash mix at top, black transition to grey, very loose, wet (approximate start of fly ash)	4-2-2
28.0	30.5	ST-1 / 2.55'	Fly Ash, gray, wet	
30.5	32.0	S-14 / 1.5'	Fly Ash, gray, very loose, wet	1-1-2
32.0	34.5	ST-2 / 2.24'	Fly Ash, gray, wet	
34.5	36.0	S-15 / 1.5°	0.5' Fly Ash, gray, medium dense, wet (approximate end of fly ash) 0.5' Fly Ash, clay, gray, medium dense, wet 0.5' Clay, sand, brown, very stiff, moist-wet	9-11-9
36.0	38.0	ST-3 / 1.52'	Clay, red-brown, moist	
44.0	45.5	S-16 / 1.5'	Clay, sand, red-brown, very stiff, moist	20-12-10 1.75 tsf
49.0	50.5	S-17 / 1.5°	Clay, sand, brown-gray, stiff, wet	0-3-7 0.75 tsf
_				
			Set Inclinometer at ≈ 49' bgs. Back fill with grout mix: approx 1 unit pcc, 1 unit bentonite, 6.25 units water by weight.	

Boring No. <u>GA-4B</u>

Page <u>1</u> Of <u>1</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-15-09	Drilling Contractor: Horn and Associates
Finish Date: 12-15-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: BAP West Dike section A-A	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 593.37' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: asphalt surface approx 0.5' thick	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 717992.94 E 1735731.64	Total Depth of Boring: 49.0'

DEPTH	(FEET)	SAMPLE NOS.,		BLOW COUNTS		
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	AND COMMENTS		
9.0	10.5	S-1 / 0.4'	Sand, gravel, brown, dense, damp	30-25-18		
19.0	20.5	S-2 / 0.5°	Sand, clay, brown - mottled black, medium dense, damp	12-12-14		
29.0	31.5	ST-1 / 2.38°	Fly Ash, gray, wet			
32.5		Vain Shear	30 lb-ft / 60° 10 lb-ft / 360°			
39.0	40.5	S-3 / 1.5'	Clay, silty, sandy, grayish brown streaked red, very stiff, moist-wet	4-8-9 1.25 tsf		
49.0	50.5	S-4 / 1.5'	Sand, clay, silt, grayish brown, soft, wet	1-1-1		
			Set Inclinometer at ≈ 49' bgs. Back fill with grout mix: approx 1 unit pcc, 1 unit bentonite, 6.25 units water by weight.			

Boring No. <u>GA-4C</u>

Page <u>1</u> Of <u>1</u>

PROJECT: AEP Philip Sporn	PROJECT NO: 09-387
Start Date: 12-15-09	Drilling Contractor: Horn and Associates
Finish Date: 12-15-09	Driller: Tom Leininger
Logged By: Seth Frank	Helper: Robert, George, Jared
Location: BAP West Dike section A-A	Drill Type: Diedrich D120 Truck Mounted
Ground Elevation: 593.34' NGVD29	AEP Contacts: Mark King and Ginger MacKnight
Notes: asphalt surface approx 0.5' thick	Thickness of Soil:
NAD27 Coordinates Provided by AEP	Depth Drilled In Rock:
N 718001.45 E 1735726.53	Total Depth of Boring: 49.0'

DEPTH (FEET) SAMPLE NOS.,				
FROM	то	& SPLIT SPOON RECOVERY	SOIL/BEDROCK DESCRIPTION	BLOW COUNTS AND COMMENTS
9.0	10.5	S-1 / 1.4'	Sand, bottom ash, clay, brownish black, dense, damp	28-19-19
19.0	20.5	S-2 / 1.5'	Bottom Ash, black, medium dense, moist-wet	5-5-10
30.0		Vain Shear	40 lb-ft / 60° 20 lb-ft / 360°	
32.5		Vain Shear	30 lb-ft / 60° 10 lb-ft / 360°	
49.0	50.5	S-3 / 1.5'	Clay, sand, reddish gray, stiff, wet	6-6-4 0.5 tsf
	_			
		:		
	i		Set Inclinometer at ≈ 49' bgs. Back fill with grout mix: approx 1 unit pcc, 1 unit bentonite, 6.25 units water by weight.	

GA-1A, 1B, & 1C Inclinometer Survey

Project:

Fly Ash Pond East Dike Cross Borehole Seismic

GA Job No.:

09-387

Title:

Down Hole Inclinometer Survey

Performed By:

Location:

SWF N 38.97292 W 081.92823

Date:

January 6-7, 2010

	GA-1A	←Distance (ft)→	GA-1B	←Distance (ft)→		*GA-1C		
	A-Axis		A-Axis		A-Axis	B-Axis	Combined	
	Cumulative	Based on Top of	Cumulative		Cumulative	Cumulative		
Depth	Deviation	Pipe Distance =	Deviation	Pipe Distance =	Deviation	Deviation	Deviation	
(feet)	(inches)	9.42'	(inches)	10.08'	(inches)	(inches)	(inches)	
2.5	-0.91	9.51	0.22	10.02	0.27	-0.48	-0.53	
4.5	-1.81	9.60	0.38	9.96	0.57	-0.98	-1.10	
6.5	-2.59	9.67	0.42	9.91	0.88	-1.44	-1.64	
8.5	-3.19	9.71	0.29	9.87	1.22	-1.88	-2.19	
10.5	-3.57	9.71	-0.14	9.87	1.50	-2.27	-2.66	
12.5	-3.95	9.69	-0.71	9.88	1.80	-2.64	3.14	
14.5	-4.40	9,68	-1.27	9.88	2.12	-2.99	-3.62	
16.5	-4.92	9.68	-1.83	9.89	2.45	-3.34	-4.09	
18.5	-5.49	9.68	-2.40	9,90	2.82	-3.67	-4.59	
20.5	-6.03	9.67	-3.08	9,91	3.20	-3.98	-5.08	
22.5	-6.58	9.65	-3.79	9.93	3.62	-4.30	-5.60	
24.5	-7.17	9.64	-4.57	9.96	3,96	-4.61	-6.06	
26.5	-7.75	9.62	-5.34	9.99	4.25	-4.91	-6.47	
28.5	-8.14	9.59	-6.04	10.01	4.59	-5.14	-6.89	
30.5	-8.41	9.55	6.87	10.05	4.89	-5.40	-7.77	
32.5	-8.74	9.51	-7.70	10.07	5,22	-5.76		
34.5	-9.22	9.48	-8.45	10.09	5.56	-6.20	-8.31	
36.5	-9.82	9.48	-9.11	10,10	5.83	-6.65	-8.83	
38.5	-10. 4 6	9,48	-9.78	10.12	6.09	-7.10	-9.33	
40.5	-10.91	9.45	-10.55	10.14	6.33	-7.50	-9.78	
42.5	-11.35	美 三 9.42	-11.29	10.17	6.67	-7.85	-10.27	
44.5	-11.93	9.42	-11.99	10.18	7.15	-8.16	-10.82	
46.5	-12.64	9,43	-12.57	10.18	7.71	-8.45	-11.43	
48.5	-13.35	9,43	-13.18	10:17	8.31	-8.77	-12.07	
50.5	-13.91	9,42	-13.95	10.19	8.81	-9.12	-12.67	
52.5	-14.41	9.42	-14.37	10.17	9.28	-9.52	-13.30	
54.5	-14.94		-14.67	10:14	9.72	-9.97	-13.93	
56.5	-15.55	9,45	-15.17	1014	10.09	-10.42	-14.50	
58.5	-16.20	9.48	-15.50	10.12	10.39	-10.80	-14.98	
60.5	-16.82	9,51	-15.72	10.12	10.46	-11.08	-15.23	
62.5	-17.42	9.54	-15.96	10.11	10.63	-11.37	-15.56	
64.5			-16.23	10.09	11.05	-11.76	-16.12	
66.5	-18.46	9,58	-16.53	10,05	11.62	-12.25	-16.87	
68.5					12.19	-12.78	-17.66	
70.5					12.57	-13.31	-18.30	
72.5					12.98	-13.82	-18.95	
74.5					13.46	-14.34	-19.66	
76.5			Ĺl		14.01	-14.89	-20.43	

GA-4A, 4B, & 4C Inclinometer Survey

Project:

Bottom Ash Pond West Dike Cross Borehole Seismic

GA Job No.:

09-387

Title:

Down Hole Inclinometer Survey

Performed By:

SWF

Location:

N 38.96816 W 081.92926

Date:

January 6-7, 2010

GA-4A		←Distance (ft)→	GA-4B		←Distance (ft)→ G		A-4C	
	A-Axis			A-Axis			A-Axis	
	Cumulative	Based on Top of		Cumulative	Based on Top of		Cumulative	
Depth	Deviation	Pipe Distance =	Depth	Deviation	Pipe Distance =	Depth	Deviation	
(feet)	(inches)	9.67'	(feet)	(inches)	10.04'	(feet)	(inches)	
2.5	-0.11	9.67	4	-0.13	10.03	4	-0.24	
4.5	-0.17	9.66	6	-0.26	10.02	6	-0.45	
6.5	-0.21	9,66	8	-0.35	10.02	8	-0.64	
8.5	-0.21	9.65	10	-0.46	10.01	10	-0.76	
10.5	-0.15	9.62	12	-0.73	10.03	12	-0.85	
12.5	-0.12	9,59	14	-1.06	10.05	14	-0.90	
14.5	-0.16	9,57	16	-1.34	10.07	16	-0.97	
16.5	-0.18	9,54	18	-1.70	10.10	18	-0.98	
18.5	-0.16	9,51	20	-2.11	10.17	20	-0.58	
20.5	-0.14	9.47	22	-2.50	10,25	22	-0.03	
22.5	-0.05	9.45	24	-2.73	10.29	24	0.22	
24.5	0.06	9.42	26	-2.89	10.32	26	0.43	
26.5	0.06	9,41	28	-3.09	10.35	28	0.57	
28.5	0.12	9.38	30	-3.34	10.37	30	0.63	
30.5	0.41	9.32	32	-3.78	10.42	32	0.75	
32.5	0.84	9.25	34	-4.19	10.47	34	0.97	
34.5	1.18	9,20	36	-4.50	10,52	36	1.27	
36.5	1.55	9.15	38	-4.70	10,56	38	1.57	
38.5	1.98	9.11	40	-4.79	10.59	40	1.78	
40.5	2.42	9.06	42	-4.89	10.60	42	1.82	
42.5	2.85	9.02	44	-4.99	10.61	44	1.86	
44.5	3.29	8.98	46	-4.96	10.62	46	1.99	
46.5	3.82	8.96	48	-4.65	10.62	48	2.27	

LABORATORY DATA FROM: "PHILIP SPORN ELECTRIC GENERATING PLANT BOTTOM ASH FACILITY – ENGINEERING REPORT"

PREPARED/COMPILED BY: GEOTECH/HYDRO/SITE SECTION OF AMERICAN ELECTRIC POWER CORPORATION

DATED: 1996

DIKES
POND
ASH
FLY
1
PLANT
SPORN
ROJECT:

•	
4	
1	
T ATELOTY T	
1	
	NUMBER:

Borehole	Depth ASIM	ASTW Soil Type	Maximum	Optimum Liquid Plastic Gravel Sand <#200 < 002 Samarifia Drumbley	FlasticiGrave	Sand <#200	persion v	1 6 4 0 Dymh 1 1 1 1	140
or Excav	Description	Classif-	Dry Density	Moisture Limit	Limit.	S	C. C. C. C. C. C. C. C. C. C. C. C. C. C	arity	Moterne
No.	ft.	dation]bd[- W	olo olo	olo olo	%	cas/wo	t
10-96	TIIS 0 0	ME.	1	dN	0 0 6N	10.6 89.4	18 4	-	113 1
10-96	5.0]	_	-	- 			 !		
10-96	8.5 SILTY SAND	MS	_	<u>an</u>	NP 13.5	54.1 32.4	- 6		: -
10-96	16.7 SILTY SAND	MS	_	<u>an</u>	NP 11.0				
10-96	21.7	_	_						46.
10-96	26.7 SILT with SAND	ME	-	<u>an</u>	- 6 연 연 연	15.7 84.2			· ·
10-96	36.7	_	_	26.1	18.1				124 7
10-96	51.7	_	_	24.8	18.2				0 20
96-02	0.0	_		41.2	24.5				1.08 1.08 1.08
96-02	5 0			[31.1	19:11				. u. u.
96-02	16.9	_	_		_			. _	י ע ע יי
96-02	31.9								10.0
96-02	6.13			39.5	22.4				7 . CF
96~03	26.7	_	_	4.48	20.61				0 m
96-04	5.0 SILTY SAND with	SM	-	d. EX	P. LE AN	7. 04 7. 04	- -		5.
96-04	5.0 GRAVEL	_	-		-		 !		
96-04	CINES YILIS 511	IMS	_	dn	NP 4.1	58.1 37.8	8.		12.0
96-04	16.6 SILTY SAND with	WS	_	- AN	NP 24.9		ιn σ		?
96-04	16.6 GRAVEL	_	_	_		•			
96-04	26.6	_		_				<u> </u>	7
96~04	31.6 SILTY SAND	WS		<u>an</u>	6.9 GN	47.3 45.8	- 8-1		#
96-04	41.6	_	_	28.1	18 4		-	_	22.1
96-04	51.6	_		25.7	17.2		. —	. —	
96-05	0.0	_	_	28.5	20.1				18.5
96-05	5.0	_	_	an)	-du				
96-05	21.7	_	_	27.2	17.1			_	15.3
96-05	26.7	_	_	NP	dN		****	_	70.6
96-05	31.7	_	_		_				38.4
96-05	36.7	_	- .	dn	NP		-	_	52.5
96-05	41.7	_	_	_	_				40.9
96-05	56.7		_	33.8	20.5		_		28.0
90-96	11.5	_		34.9	19.7				25.0

etural	loisture			σ.
Optimum Liquid Flastic Gravel Sand <#200 <.002 Specific Prmblty Natura	avity	m/sec		
.002 Spe	mm Gr	- %		_
and <#200 <	Sieve mm Gravity	J,e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Flastic Gravel S	Limit	9/0		21.8
Optimum Liquid	Moisture Limit	%		33.0
Maximum	Dry Density	pof		_
ASTM Soil Type	Classif-	ication	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Borehole Depth ASTW	Description	ft.		31.5
Borehole	or Excav	No.	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	90-96

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

Order No. 90979.027

CORPORATE CENTER 4120 AIRPORT ROAD CINCINNATI, OHIO 45226 (513) 321-5816 FAX (513) 321-0294

August 29, 1996

Mr. P.J. Amaya American Electric Power Corporation 1 Riverside Plaza Columbus, Ohio 45315

Re: Laboratory Tests

Project: Sporn Plant-Bottom Ash Pond

Complex Testing-Contract No.

C-9117, LOA-001-96

Dear Mr. Amaya:

Submitted herewith is our report covering the results of nine (9) Consolidated Undrained Triaxial tests with pore pressure measurements, four (4) Moisture Contents and Atterberg Limits. Tests were performed per your request by letter dated August 14, 1996. All samples were obtained and shipped to our laboratory from the referenced project by your representative. Cost for these tests were as outlined per Contract No. C-9117.

Should any discussion be required concerning this report, please feel free contact the undersigned. The H.C. Nutting Company thanks American Electric Power for allowing them this opportunity to be of service. Attached are the tabulated and plotted results.

H.C. NUTTING COMPANY

Robert L. House,

Vice President/Lab. Director

H.C. Nutting Company 4120 Airport Road Cincinnati, Ohio 45226

American Electric Power Sporn Plant-Bottom Ash Pond Complex New Haven, WV HCN W.O. # 90979.027

8/27/96smo

TABLE II

TABULATION OF UNDISTURBED TEST DATA

Lab No.	5623	5624	5624	5625	5625	5625	5626	5626	5626	
Water Content (%)	26.9	30.0	31.3	29.2	27.8	28,4	21.8	24.2	24.8	
Dry Density (Lbs./Cu. Ft.)	96.4	91.0	91.2	95.7	8.3	9.96	103.8	100.6	99.66	
Failure Strain (%)	20.2	6.9	5.8	9.0	8.0	9.7	19.1	20.7	14.6	
Confining Pressure P.S.I.	10	20	40	5	10	20	10	20	40	
Triaxial Compressive Strength (TSF)	1.82	1.96	2.65	96.0	1.54	1.20	2.65	2.93	6.22	
Depth (Ft.)	43.9-45.9	45.9-48.9		21.7-23.7			46.6-48.6			
Sample No.	ST-12	ST-13		ST-7			ST-12			
Boring No.	9602-12	9602-13		9603-7			9604-12			

October 30, 1995 T-533D

American Electric Power Service Corporation

1 Riverside Plaza Columbus, Ohio 43215

Attention: Mr. M. T. Damian

RE: Laboratory Testing BBC&M JOB NO. T-533D Bottom Ash Testing - Sporn Fly Ash Pond Dike Remediation New Haven, West Virginia

Gentlemen:

Enclosed are the results of the laboratory testing on the BOTTOM ASH sample for the Sporn Fly Ash Pond Dike Remediation project. Included are the appropriate curves, summary sheets with listed numerical values, as well as the laboratory test data sheets and notes.

We are pleased to have been of service to you. If you have any questons regarding this work please contact this office.

Very Truly Yours,

BBC&M ENGINEERING, INC.

Jöhn D. Jenkins, Jr. Laboratory Supervisor

SUMMARY OF TRIAXIAL COMPRESSION TESTS

SATURATED, CONSOLIDATED, DRAINED (PEAK STRESSES PLOTTED)

EFFECTIVE STRESS

Specimen Identification	Classification	DD	MC%
SPORN PLANT BUCKET (Bottom Ash)	Dark-gray and gray fine to coarse sand, little fine to coarse gravel, trace silt.	60	42
SPORN PLANT BUCKET (Bottom Ash)	Dark-gray and gray fine to coarse sand, little fine to coarse gravel, trace silt.	60	36
SPORN PLANT BUCKET (Bottom Ash)	Dark-gray and gray fine to coarse sand, little fine to coarse gravel, trace silt.	60	40
SPORN PLANT BUCKET (Bottom Ash)	Dark-gray and gray fine to coarse sand, little fine to coarse gravel, trace silt.	60	37

PROJECT	Bottom Ash	Testing -	Sporn Plant
LOCATION	New Haven,	West Vii	rginia
JOB NO.	T533D	DATE	10/29/95

TRIAXIAL COMPRESSION TESTS SATURATED, CONSOLIDATED, DRAINED STRESS KSF STRAIN % SHEAR STRESS K S F NORMAL STRESS KSF EFFECTIVE AXIAL STRESS **EFFECTIVE STRESS** MC% Classification DD Specimen Identification 42 BUCKET SPORN PLANT Dark-gray and gray fine to coarse 60 sand, little fine to coarse gravel, trace silt. (Bottom Ash) Bottom Ash Testing - Sporn Plant **PROJECT** BBC&M New Haven, West Virginia LOCATION _ DATE ___10/29/95 JOB NO. T533D

TRIAXIAL COMPRESSION TESTS SATURATED, CONSOLIDATED, DRAINED STRESS KSF 10.0 12.5 STRAIN STRESS NORMAL STRESS KSF **EFFECTIVE AXIAL STRESS EFFECTIVE STRESS** DD MC% Classification Specimen Identification Dark-gray and gray fine to coarse 60 36 BUCKET SPORN PLANT sand, little fine to coarse gravel, trace silt. (Bottom Ash) Bottom Ash Testing - Sporn Plant **PROJECT** BBC&M New Haven, West Virginia LOCATION 10/29/95 T533D DATE _ JOB NO.

TRIAXIAL COMPRESSION TESTS SATURATED, CONSOLIDATED, DRAINED STRESS KSF 10.0 20.0 12.5 STRAIN SHEAR STRESS NORMAL STRESS KSF EFFECTIVE AXIAL STRESS **EFFECTIVE STRESS** MC% DD Classification Specimen Identification 37 60 Dark-gray and gray fine to coarse SPORN PLANT BUCKET sand, little fine to coarse gravel, trace silt. (Bottom Ash) Bottom Ash Testing - Sporn Plant **PROJECT** BBC&M New Haven, West Virginia LOCATION DATE ___10/29/95 T533D JOB NO.

BBC&M ENGINEERING, INC.

0.58

TRIAXIAL SHEAR TEST

(back pressure and pore pressure data)

saturation

PROJECT :	BOTTOM AS	SH TESTING.	- SPORN PL	'ANT JOB	NO. : T-533	DATE :	10/8/95	
BORING:			SAMPLE :	75% Dr	. (4 Psi)	DEPTH		
Increment		Elapsed	Chamber	Applied	Measured	Plpette	Volume	Otal
Number	Time	Time	Pressure	Back	Pore	Reading	Inflow	Indicator
	1,1110	Minutes	pst	Pressure	Pressure	cc	cc	Reading
			•	pst	pst			Inches
	3:12 PM	0	4	0	0	0.0	0	0.100
			~		0.6-03	39.0	+39.0	
2	3:20 PM	0	4	0	0.3	0	+39.0	
		5				41.5	+80.5	
3	3:27 Pm	O	10.0	6.0	0.3	0	+ 80.5	
				/	6.0	50.0	+ 130.5	
4	3:32 PM	0	2000	16.0	6.0	٥	+130.5	
		2		<u> </u>	16.0	41.1	+171.6	
5	3:40 PM	0	70.0	1940	16.0	0	+171.6	
				V	19.0	3.3	+174.9	
6	3:41 PM	0	30.0	29.0	19.0	3.3	+174.9	
		2	レ	~	29.0	17.2	+188.8	
			,	•				
7	3:44 PM		40.0	39.0	29.0	17.2	+188.8	·
			レ	~	39.0	24.3	+195.9	
8	3:46 PM	0	41.0	40.0	3900	24.3	+ 125.9	
				_	40.0	22.5	+194.1	
		5	<u> </u>	~		20.0	+191.6	
9	3:57 PM	0	40.5	40.0	40,0	20,0	+191-6	
			L	_	~	22.5	+194.1	
10	4:00	0	41.0	40.0	4000	22.5	+1941	
	,		~			21.5	+193.1	
		12			<u></u>	15.0	+ 186.6	
	-	20	<u>ا</u> ب			10.0	+181.6	
	R -5 9	ET PIP	ETTE			42.5	+181.6 .	
						16.3	+120.4	26,2+35,0 = 64
	Dial Indicate	or reading be	fore saturation	on0.[00	In.		
			ter saturation					1
			saturation (AH			ln. In		
EMARKS						In.		
in intro :	B= 1.0/ B= 9.8/w	- 0001	C 7:00 /M	KESET	16 41 psi.	r 40 psi. (Commercies top Back-Pressure	इ हन्याका
-4148	D= '''/10	00- 48/0	·····			Tõ	BACK-PRESSURE	burgerres)
			BBC	SM ENGINEERING. II				ļ

TRIAXIAL SHEAR TEST Preliminary Consolidation

PROJECT:	Bottom Asi	4 TESTING -	SPORN FLA	JOB	NO. : T-533	D DATE :	10/8-12	195
BORING:			SAMPLE:		R (4851)		•	
Increment Number	Time	Elapsed Time Minutes	Chamber Pressure pst .	Applied Back Pressure psi	Measured Pore Pressure pst	Pipette Reading cc	Volume Change (AV) cc	Dial Indicator Reading Inches
	9:17 PM	0	44:0	400	40.0	50.0	0	0.100
Walac	7,70					49.0	-1.0	
10/9/95	7:25 Am		·					
10/10/95	12:15 PM		_/		40.1	49.0	-1.0 .	
10/11/95	10:25 Ar	1	V	/	40.1	49.1	-0.9	
10/12/95	10:50 m			V	400	49.1	-0.9	0 .104
								
·								-
					•			
				·				
						•		
ĒMARKS :	Dial Indicator Dial Indicator Change in hel	reading afte	r consolidation (a	on o.1	04	in. to. in.	•	
			BBC8	M ENCINEERING, IN	c			

TRIAXIAL SHEAR TEST CONSOLIDATION/SATURATION CALCULATIONS DUECT: BOTTOM ASH TESTING - SPORN PLANT JOB NO. : T-533 D DATE: 10/12/95 75% DR (4psi) BORING: ASTM D-4767 Ho - 5.600" Hc - Ho - AHO ΔHo - 0004" Ho - Initial height of specimen - in-Vo - 35.850/W3 aHo - change of height in specimen after consolidation - in. AVC - 0.0 549,N3 AVsat - 000 M3 Ac - (Vo - AVsat - AVc) / Hc AHS - 0.00" where : Vo - initial'volume of specimen - in.3 therefore i ΔVc - change in volume during consolidation (burette) - in.³ Hc - 5.596" ΔV sat - change in volume during saturation - in 3 as follows : Ac - 6.397 m 2 ΔVsat - 3Vo ΔHs / Ho where : AHs - change in height during saturation - in. PISTON (SATURATION) 44 PSi X. 1963, N = 8.64# = 39/89MS. Pistro (OAD (SHEAR) 4 PSi X.1963 IN = 0.79 # = 356 9MS. DVC = 0.90C = 0.0549,N3 AC = (35.85011N3 - 0.004N3 - 0.05491N3) |5.596" = 35.79521N3 |5596" = 6.3971N2

	TRI	AXIAL COMF	RESSION TI	EST DATA	AND COMPU	TATION SHE	ET					
PROJECT :	BOTTOM A	SH TESTING	- Sporw PC	AM JOB	NO : 7-53	DATE :	10/12-2	2/95				
. JURING :			SAMPLE :	75% D	2 (88i)	ОЕРТН	:					
MATERIAL :												
Circ. : <u>8.97"</u> Moisture Content Before After												
Height: 5		.855" Area :				Test	Te					
Volumn :		28201M3 = 28		No. :			A-1	2				
DRY Wt. of		565.SS			Pan :			74				
•				Wt. Sple. + f		A FA		, 9Z				
UDW :	_	60.180	£ Wt.	of Pan :		// / I I	166.					
Vol. Change	- cc;		Wt.	of Dry Soil			56z.					
Type of Te	est:	CD	Wt.	of Water :			199.8					
Load Cell :		5K		loisture			35.	<u>s</u>				
	4" Ac= (6.33 m3	COADING	DATE = .C			,					
Dial						mental	Total					
Deft.		1 -	Average	Load		Stress	Vert. Stress					
tnchx10 ⁻³	Strain	Strain	Area	lbs.	psl	ksf	ksf 1,15					
0	.0000	1.0000	6.33	0	0.00	0.00	· · · · · · · · · · · · · · · · · · ·					
25	.0045	.9955	6.36	122	19.18	2.76	3.9 <i>l</i> 4.80					
50	.0089	.9911	6.39	162	25,35	3.65 4.51	5.66					
75 .	.0134	.9866	6.42	201	31.31 37.05	5.34	6.49					
100	.0179	.9821	6.45	239		6.01	7.16					
25 50	.0223	.9777	6.47 6.50	295	41.73 45.38	6.54	7.69					
75	. 0268	.9732	6.53	320	49.00	7.06	8.21					
200	.0313	.9687	6.57	340	51.75	7.45	8.60					
50	.0358	.9642	6.63	368	55.51	7.99	9.14					
300	.0447		6.69	386	57.70	8.31	9.46					
50	.0536 .0626	.9464 .9374	6.75	399	59.11	8.51	9.66	4.29				
400		.9285	6.82	406	59.53	8.57	9.72	1.15				
50	.0715 .0804		6.88	410	59.59	8.28	9.73	5.44				
500	.0894	.9196	6.95	406	58.42	8.41	9.56					
50	.0983	.9017	7.02	408	58.12	8.37	9.52					
600	.1673	.8927	7.09	409	57.69	8.31	9.46					
50	. 1/62	. 8838	7.16	407	56.84	8.19	9.34					
700	.1251	.8749	7.24	406	56.08	8.08	9,23					
50	.1341	.8659	7.31	405	55.40	7.98	9.13					
800	.1430	.8570	7.39	401	54.26	7.81	8.96					
50	. 1519 .	.8481	7.46	399	53.49	7.70	8.85					
900	.1609	.8391	7.54	398	52.79	7.60	8.75					
50	.1698	.8302	7.62	396	57.97	7.48	8.63					
1000	. 1788	.8212	7.71	396	51.31	7.40	8•य					
50	.1877	.8123	7.79	394	50.58	7.28	8.43					
1100	1966	.8034	7.88	389	49.37	7.41	8.26					
50	.2056	.7944	7.97	388	48,68	1.01	8.16					
1200	.2145	.7855	8.06	383	47.52	6.84	7.99					
		1		CBM ENGINEERING,	INC.							

TRIAXIAL SHEAR TEST

(back pressure and pore pressure data)

saturation

. ROJECT :	Bottom Asi	4 tesnia -	Sporn PlA	VT J08	NO. : 7-533	Δ	DATE :	10/12-19	1195
BORING:			SAMPLE :	75% ì	on (8 psi)		DEPTH	·	
Increment		Elapsed	Chamber	Applied	Measured	Ptpe	tte	Volume	Dial
Number	Time	emlT	Pressure	Back	Pore	Read		Inflow	Indicator
		Minutes	psi	Pressure	Pressure	C	_	cc	Reading
				pst	pst	TBP	B.T.	(TOTAL)	Inches
	9:35 PM	0	8.0	. 0	0	3.5	205	0	0,100
		2		Ø	0.6	10.0	75.8	+ 11.8	·
	9:37 PM	U	8.0	4	0.6	lao	2528	+11.8	
		<u> </u>	<u> </u>	~	3.7	37.0	500	+63.0	
		4		<u></u>	4,0	405	50.0	+6625	
3	9:44 am		8.0	6.0	4,0	0.0	0.0	+66.5	
		3	~		6.0	29.5	0.0	+96.0	
4	9:48 PM	Ø	15,0	13.0	6.0	29.0	0,0	+96.0	
	· · · · · ·	2 3	· ~		13.0	37.0	50,0	+154.0	
5	9:55 PM	0	25.0	23.0	13.0	0.0	0.0	+1540	
		ヱ	<u> </u>	v ·	23.0	0.0	47.0	+201.0	
6	9:57 PM	0	35.0	33.0	23.0	0.0	4700	+2360	
-		2	<u> </u>	<i>`</i>	33.0	76.6	47,0	+ 227.60	
7	10:00 PM	0	41.0	40.0	33.0	26.6	4700	+227.6	
·					40.0	395	4700	+ 240.5	
		· 12	= SET	TO SATUR	ATE				
				<i>t</i> 8				·	
	10:05 PM	0	41.0	40.0 40.0	40.0	415	20.4	+240.5	
10/13/95	7:05 AM			~ ~	<u> </u>	44.2	23.7	+246.5	
10/15/95	10:30 Am	i		V	V	450	43,7	+267.3	
10/16/95	8205 PM			'		<u> </u>	49.5	4273.1	
10/17/95	1:30 PM					48.0	44.5	+276.1	
10/17/95	1:32 PM					70.8	20,0	+276.1	RESET
10/19/95	8:05 Am					20.7	225	+278.5	+2.4
10/19/95	10:20 AM	-					23.4	+279.4	+0.9
									· · · · · · · · · · · · · · · · · · ·
								•	
					·			····	
		·							
		l						·	
HARKS : -	Dial Indicate	or reading be or reading af eight during	ter saturation saturation (al	ls)	00	in. in. in.	<u> </u>		
			B8C	SM ENCINEERING, IN	C				

TRIAXIAL SHEAR TEST

Preliminary Consolidation

PROJECT :	Bottom A	sutening -	SPORN PLAN	<u>т</u> јов	NO. : 7-53	3.D	DATE :	10/19-22	195
BORING :			SAMPLE:	75% D	r (8 Psi)		0EPTH	:	·
Increment Number	Time	Elapsed Time Minutes	Chamber Pressure psl .	Applied Back Pressure psi	Measured Pore Pressure psl	Pipe Read c	ding	Volume Change (aV) cc	Dial Indicator Reading Inches
L	10:20 Am	Q	48.0	4000	40,0	19.9	24:1	0	001.0
			~			18.6	225	(-1-3)+(-1.6)	(-29)
	11:05	25				21.0		(+2A)+(-28)	(-0A)+(-2A)
	10:35 pm		<u> </u>			14,0	26.7	-3.3 total	(-70)+(+70)
10/22/95	10:50 AM		<u> </u>	~	~	33.5	11.1	-7.2 fotal	(-195)+ (+156) -3.9
								1.6 40140	3.7
	-								
À			· · · · · · · · · · · · · · · · · · ·						
		·:	·						
									
	-								
					· ·				
		ì							
		~							
									· · · · · · · · · · · · · · · · · · ·
					···-				
					٠.				
MARKS:	Otal Indicator Otal Indicator Change in he	reading afte	er consolidation Onsolidation (A	on	6	in. in. in.		,	
			·						
			8008	um encineering, in	c. ———				

TRIAXIAL SHEAR TEST CONSOLIDATION/SATURATION CALCUL OJECT: BOTTOM ASM TESTING - SPORN PLANT JOB NO. : T	-533 D DATE :
BORING: SAMPLE: (81	PSi)
ASTM D-4767	
	Ho - 5,600"
Hc - Ho - 4Ho where:	∆Ho - 0.006"
Ho - Initial height of specimen - in.	Vo - 35.8501 W3
ΔHo - change of height in specimen after consolidation - in.	AVC - 0.43941N3
	AVsat - 0.00 M 3
Ac - (Vo - aVsat - aVc) / Hc	ΔHs - 0.00"
where : Vo - Initial volume of specimen - In. ³	1
ΔVc - change in volume during consolidation (burette) - $in.3$	therefore (Ho - 5,594"
ΔV sat — change in volume during saturation — in ³ as follows:	Ac - 6.33/18 ²
ΔVsat - 3Vo ΔHs / Ho	7.0
where:	
AHs - change in height during saturation - in.	
PISTON COAD = (SATURNATION) 48 psi X.19(311) = 9.42# = 4	t 274 gms.
PISTUM COAD = (SHEAR) 8 PSi X. 1963 IN = 1.57# = 7	11
AUE = 7.200 = 0.43941N3	·
AUSAT = 3 x 35.8501 in 3 X 0.00" / 5.60" = 0.00 IN 3	
Ac = (35.8501 m3 - 0.00 m3 - 0.4394 m3) /5.594" = 35.4107 m3/	15.594in = 6.53in2

BBC&M ENGINEERING, INC.

	TRIA	XIAL COMP	RESSION TE	ST DATA	AND COMPUT	ATION SHE	ET	
PROJECT :	BOTTOM F						10/22-25/	95
: ORINGن			SAMPLE :	75% D	L (16 PSi)	_ DEPTH	:	
MATERIAL :								
_	Ctrc. : 8	<u>'.97"</u>	Mots	ture Content		Before	Afte	1
Helght : 5	Circ.: <u>8</u> 60" Diam.: 2.	<u>855"</u> Area : _	6.402IN			Test	Tes Tes	
Volumn :	<u>35.</u> ;	8501 1232 58	7.48C4 Pan	No. :			912.5	
DRY WI. of	Sple. :	565.5	Dou	Wt. Sple. + P	an :		685	
UDW :		60 1	Pct Wi.		un	MA	122	
Vol. Change			Wt.	of Dry Soll :			563.	30
Type of Te		CD	Wt.	of Water :			227.1	
Load Cell:		SK	······································	olsture			401	3
	4" Ac=			DING RATE	0.005"/1			
Dial					Increm Deviator		Total Vert. Stress	j
Defl.		1 -	Average	Load		ksf	ksf	
tnchx10 ⁻³	Strain	Strain	Area	lbs.	psl		2.30	
0	.0000	1.0000	6.37	178	27.81	4.01	6.31	
25	.0045	.995S	6.43	248	38.57	5,55	7.85	
50 75	.0089	.9911	6.46	299	46.28	6.67	8.97	
100	.0134 10179	.9821	6.49	341	52.54	7.57	9.87	
25	.0223	.9777	6.52	382	58.59	8.44	10.74	
50	.0268	.9732	6.55	414	63.21	9.10	11.40	
75	.0313	.9687	6.58	443	67.33	9.69	11.99	
200	.0358	.9642	6.61	477	72.16	10.39	12.69	
50	.0447	.9553	6.67	524	78.56	11.31	13.61	
300	.6536	.9464	6.73	561	83.36	1200		6.34
50	.0626	.9374	6.80	585	8603	12.39 12.59	14.89	2.30
400	.0715	.9285	6.86	600	87.46 88.0%	12.68	14.98	(8.64)
50 500	.0804	9196	7.00	616	88.00	12.67	14.97	
50	.0894	.9017	7.06	616	87.25	12.56	14.86	
600	.1073	.8927	7.14	612	85.71	12.34	14.64	
50	.1162	.8838	7.21	612	84.88	12.22	1452	ļ <u></u> .
700	.1251	.8749	7.28	607	83.38	12.01	14.31	
50	. 1341	.8659	7.36	607	82.47	//.88	14.18	
800	. 1430	.8570	7.43	606	81-56	11.74	14:04	
50	.1519	.8481	7.51	606	80.69	11.62	13.92	
900	.1609	.8391	7.59	605	79.71	11.48	13.28	
50	.1698	.8302	7.67	605	78.88	11.3b	13.66	
1000	.1788	.8212	7.76	604	77.84	11.21	13.51	
50	.1877	.8123	7.84	604	77.04	11.09	13.39	
1100	.1966	.8034	7.93	603	76004	10.95	13.25	
50	12056	.7944	8.02	603	75.19	10.69	12.99	
1200	.2145	,7855	8.11	602	74.23	10.67	10011	
L	<u> </u>			ICAM ENGINEERING,	INC.	<u>.l</u>		

TRIAXIAL SHEAR TEST

(back pressure and pore pressure data)

				saturation					
. ROJECT :	Bottom As	n TESTING -	Sporn Pun	T JOB	NO. : 7-53	3 D	DATE:	10/22-20	1/95
BORING ;		<u> </u>	SAMPLE :	75% Da	(16 psi)		DEPTH		
Increment		Elapsed	Chamber	Applied	Measured	Pto	ette	Volume	Dial
Number	Time	Time	Pressure	Back	Pore	1	ding	Inflow	Indicator
	i nae	Minutes	pst	Pressure	Pressure	1	_		Reading
		···············	psi	psi	pst .		c	cc	Inches
1	2:19PM	0	4.0	0.00	0.00	OD.OT	Ama R	0	0.100
		Ī				6.7	105		0,100
	. OPEN	TRANS DUCK	TO - Close	- TBP		67	50.0	+ 53.3	
	OPEN		2- open			3900	D.0	+323	
						38-2	5000	+50.0	
						0.0	0.0	135.6 TOTAL	
						40.5	50.0	+ 90.5.	
						0,0	0.0	225.5 POAL	
	Z:50 PM	3/-	4.0	0.0	0,00	4.3	220	+31.3 = 250	8 total
	9:50 PM					15.3	16.0	256.8 +07	
2	9:50 PM	0	10.0	8.0	0.0	15.3	16.0		
	-	5			8.0		345	+38.2 = 295,) to TAL
3	9:55 PM	O	20.0	18.0	8.0	70.0	345	285.0	
		P	~	~	18.0	36.8	35.0	+17.3 • 312, 3	FOTAL.
4	9:57 PM	0	30.0	28.0	18.0	36.8	35-0	312.3	
		.2-	レ	/	28.0	40.9	365	t.5,6 =317.9 -	POTAL
5	9:59PM	0	40.0	38.0	28.0	40.9	36.5	317.9	
		3			38.0	41.2	41.1	+49=322.8	TOTH
6	10:02 PM	٥	4710	40,0	38.0	41.2	41.1	322.8	
		(;	~	~	40.0	40.6	44.6	tz.9=325.7t	-tH-
10/23/95	91.0AM		<u></u>	~		43.5	47.2	+55=331.2 to	
	8:10 PM					51.3.		+1.8= 333.07	
		RESET	-	L/	V	20,0	41.2	3 <i>33</i> .0	0/110
	1:00 PM		~	_ ~		29.7	29.7	H8=3348	0.100
					·				0.700
							!		
								•	
		•							
				-					
	Otal Indicate Change In h	or reading be or reading af eight during :	ter saturation saturation (al-	(s)0,	100	in. in.			
MARKS :	10/25/95 B	= 3.8/5.0 = 7	76% B	8:15PM B	= 42/5.0=	84%	@1	OORN R= 4	4/52=88%
									.00 007
				 					
			880	SH EKCINEERING, I	NC				

TRIAXIAL SHEAR TEST Preliminary Consolidation

				J				
rROJECT:	Bottom F	18H TESNIC	-SPORN P	LINT JOB	NO.: <u>7-53</u>	DATE:	10/24-2	5/95
BORING:		<u> </u>	SAMPLE :	75% Dr	(16 Psi)	OEPTH	:	
Increment Number	Time	Elapsed Time Minutes	Chamber Pressure psl.	Applied Back Pressure psi	Measured Pore Pressure pst	Pipette Reading cc	Volume Change (AV) cc	Dial Indicator Reading Inches
	1:05 PM .	0	560	40.0	40.0	29.7	0	0.100
10/25/00	7'				40.1	29.6		
10/25/95	7:00 AM					26.1	- 3.6	0.106
				•				
•								
								
-								
								 -
		•			•			
·		,			·			
· · · · · · · · · · · · · · · · · · ·								
						•		
	Dial Indicator	r reading befo	ora anemalista	Han C	100	 		
		r reading bero r reading afte			06	in.	•	
		elght during co			006	in. In.		
MARKS :								
•	· 		880	EM ENCINEERING, IN	IC			

TRIAXIAL SHEAR TEST CONSOLIDATION/SATURATION CALCULATIONS 5- JECT: BOTTOM ASH TESTING - STORM PLANT JOB NO.: T-533D DATE: 10/25/95 SAMPLE: 75% DR (16 PSi) BORING: ASTM D-4767 Ho - 5.600" Hc - Ho - AHO AHO - 0.006" where : Ho - initial height of specimen - In. Vo - 35.8501m3 aHo - change of height in specimen after consolidation - in. AVC - 0.21971N3 ∆Vsat - 0.00 w3 Ac - (Vo - \Delta Vsat - \Delta Vc) / Hc AHS - 0.00 /N 3 where : Vo - Initial volume of specimen - in.3 therefore : ΔVc - change in volume during consolidation (burette) - 1n.3Hc - 5.594" ΔV sat - change in volume during saturation - \ln^3 as follows : Ac - 6.369,2 AVsat - 3Vo AHs / Ho where: AHs - change in height during saturation - in. PISTON (DAS (SATURATION) = 56 PS1 X.1963IN= 10.99# = 49869MS. PISTON (DAD (SHEAR) = 16 PSi X.1963 INL = 3.14# = 1425 gms.

AVC = 3.6cc = 0.21971N3

Ac = (35.85011N3 - 0.02 IN3 - 0.21971N3)/5.594" = 35.6304N3/5.594"= 6.37MZ

Definition Property Propert		TRIA	XIAL COMP	RESSION TO	ST DATA	AND COMPU	TATION SHE	ET	
Circ : \$27"	PROJECT :	BOTTOM AS	4 TESTING-	-SPORN P	CANT JOB	NO. : <u>T-533</u>	DATE :	10/25-28/	95
Circ. 277	BORING :			SAMPLE :	75% Dr	(BZPSi)	OEPTH	: 	
Height \$\frac{56'}{00\text{lone}} \ 2.45'' \ Area 6.42\(\alpha \) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MATERIAL :								
Volum 25.550 w 2 57.46 x 3 58.55 x 55.55 x		Clrc. : _2	<u>-97"</u>	Mols	sture Content		Before	Afte	er
DFA Wi. of Spie. SS\$.55 gas. Wet Wi. Spie. Pan :	Helght : <u>5,</u>						Test		
Decoration Dec					-				
Vol. Change - cc :	DRY Wt. of	Sple. :							
Vol. Change - cc: Wit of Dry Solt: Solt: 7 Type of Test: Cb Vit. of Water: 20 6.8 6 Load Cell: 5k X hoisture 36.8 Mr. 2 5.558** Ag = 6.227m* Load Date = 0 cos*/Agin* Total Dial Deritations: 1 - Average		****		Dry	Wt. Sple. + F	'an :	MA		
Tupe of Test: Sk. X Moisture 36.8 Hr = 5:558" At = 6:227m"			60.1 f				10 /1		
Load Cell Sk					_				
Dist Dist	-							36.	2
Dist	Load Cell:	~o" 1 —	<u> </u>			0 - 1 /-			
Defl.		8" Ac=	6.221W	Lot	DING IZATE =			Total	
Inchx 10 ⁻³ Strain Strain Area Ibs psi ksf ksf 0			1	Average	Load	2		1 (
9 .0000 1.0000 6.25 0 0.00 0.00 461 25 .0045 .7955 6.26 129 70-61 7.97 7.58 50 .0090 .9910 6.27 193 30.68 4.42 9.03 75 .0135 .9865 6.34 318 50.16 7.22 11.63 25 .0225 .9775 6.37 376 59.03 8.50 /3.11 30 .0270 .9730 6.40 424 6.25 9.54 14.15 75 .0315 .9685 6.43 472 73.41 10.57 15.18 200 .0360 .9640 6.46 520 80.50 11.59 16.20 300 .0540 .9460 6.59 6.81 10.657 15.06 19.67 50 .0630 .9310 6.65 770 115.78 16.67 21.28 100 .0120 .9100 6.91 946 135.90 18.58 22.64 50 .0900 .9100 6.91 946 135.90 19.71 24.32 50 .0900 .9100 6.91 946 135.90 19.71 24.32 50 .1169 .8831 7.05 1020 14463 20.33 25.44 700 .1259 .8141 7.13 1040 145.86 21.02 25.61 50 .1349 .8851 7.05 1020 14463 20.33 25.44 700 .1259 .8141 7.13 1040 145.86 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.25 10.83 143.6 21.02 25.61 50 .1349 .8851 7.26 10.83 143.6 21.02 25.61 50 .1349 .8851 7.28 10.85 143.6 21.02 25.61 50 .1349 .8851 7.28 10.85 143.6 21.02 25.61 50 .1349 .8851 7.48 11.25 15.14 21.80 26.41 10.95 50 .1529 .8471 7.35 11.05 19.34 21.65 26.26 50 .1589 .8191 7.48 11.25 15.14 21.80 26.41 10.95 50 .1699 .1999 .8291 7.71 1140 146.72 21.13 25.74 50 .2691 .9791 7881 7.48 11.25 15.14 21.80 26.51 15.55 50 .1709 .8291 7.71 1140 146.72 21.13 25.74 50 .2691 .9791 7881 7.86 11.24 14.55 15.01 26.51 15.55 50 .1600 .1979 .8001 7.71 1140 146.72 21.13 25.74		Strain		. •	1	psl	ksf	ksf	
25							0.00	461	
50 0.070 .9910 6.27 193 30.68 4.42 9.03 75 .0135 .9865 6.32 260 41/4 5.92 10.53 100 .0180 .9820 6.34 318 50.16 7.22 1/183 25 .0215 .9775 6.37 376 59.03 8.50 //31/1 50 .0215 .9685 6.43 472 73.41 //0.57 15.18 200 .0360 .9640 6.46 520 8050 //1.59 //6.20 50 .0450 .9550 6.52 607 93.10 //3.41 18.02 300 .0540 .9460 6.59 689 //455 //5.65 //6.77 50 .0450 .9460 6.59 689 //6455 //5.66 //6.67 50 .0520 .9310 6.67 770 ///5.79 //6.67 //6.67 //6.67 //6.67 //6.67	l								
75									
100								10.53	
25	 							11.83	
58 .0270 .9730 6.40 424 6.42 9.54 14.15 75 .0315 .9685 6.43 472 73.4/ /0.57 15.18 200 .0360 .9640 6.46 520 8050 /1.59 /6.20 50 .0450 .9550 6.52 607 93.10 13.41 18.02 300 .0540 .9460 6.59 689 /0.455 /5.06 19.67 50 .0630 .9370 6.65 770 1/5.76 /6.67 27.28 400 .0512 .9280 6.71 840 125.19 18.03 22.64 50 .0810 .9190 6.78 87.5 129.06 18.58 23.17 50 .0810 .9190 6.78 910 132.85 17.13 23.74 50 .0940 .9010 6.91 946 138.90 /9.71 24.32 50 .1169 .88	25					59.03	8.50		
75	50			6.40	424		9.54		
200 .0360 .9640 6.46 520 8050 1/59 16.20 50	75			6.43	472	73.4/	10.57	15.18	
300	200			6.46	520	80.50	11.59		
50 .6630 .9310 6.65 770 115.77 16.67 21.28 400 .6120 .9280 671 840 125.19 18.03 22.64 50 .6810 .9190 6.78 875 139.06 18.58 23.19 500 .6900 .9100 6.95 910 132.85 19.13 23.74 50 .6940 .9010 6.91 946 135.90 19.71 24.32 600 .1080 .8920 6.98 991 141.98 20.44 25.05 50 .1164 .8831 7.05 1020 144.63 20.33 25.44 700 .1259 .8741 7.13 1040 145.86 21.00 25.61 50 .1349 .8651 7.20 1063 147.64 21.26 25.87 800 .1439 .8561 7.28 1083 148.76 21.42 26.03 900 .1619	50	.0450	.9550		607	93.10			
100	300	10540	.9460	6,59	689				
50 .0810 .9190 6.78 .875 12906 18.58 23.17 500 .0900 .9100 6.85 910 132.85 19.13 23.74 50 .0990 .9010 6.91 946 136.90 19.71 24.32 600 .1080 .8920 6.98 991 141.98 20.44 25.05 50 .1169 .8831 7.05 1020 144.68 20.83 25.44 700 .1259 .8741 7.13 1040 145.86 21.00 25.61 50 .1349 .8651 7.20 1063 147.64 21.26 25.87 800 .1439 .8561 7.28 1083 148.76 21.42 26.03 50 .1529 .8471 7.35 11.05 19.34 21.65 26.26 900 .1619 .8381 7.43 11.26 151.41 21.80 26.41 10.95 50	50	.0630	.9370	6.65	770				
580 . 0 90 0 . 91 0 6.85 91 0 132.85 19.13 23.74 58 . 0 99 0 . 90 10 6.91 94 6 136.90 19.71 24.32 600 . 1080 . 8920 6.98 991 141.98 20.44 25.05 50 . 1169 . 8831 7.05 1020 144.68 20.83 25.44 700 . 1259 . 8741 7.13 1040 145.86 21.00 25.61 50 . 1349 . 8651 7.20 1063 147.64 21.26 25.87 800 . 1439 . 8661 7.28 1083 148.76 21.42 24.03 50 . 1529 . 8471 7.35 11.05 19.34 21.65 26.26 900 . 1619 8381 7.43 11.26 151.41 21.80 26.41 10.95 50 . 1709 . 8291 7.51 11.40 151.80 21.86 26.51	400	6720	.9280	671				4	
50 .0990 .9010 6.91 946 136.90 19.71 24.32 600 .1080 .8920 6.98 991 141.98 20.44 25.05 50 .1169 .8831 7.05 1020 144.68 20.83 25.44 700 .1259 .8741 7.13 1040 145.86 21.00 25.61 50 .1349 .8651 7.20 1063 147.64 21.26 25.87 800 .1439 .8561 7.28 1083 148.76 21.42 26.03 50 .1529 .8471 7.35 1105 19.34 21.65 26.26 900 .1619 .8381 7.43 11.26 151.41 21.80 26.41 10.95 50 .1709 .8291 7.51 1140 151.80 21.86 26.47 4.61 1000 .1199 .8021 7.77 1140 146.72 21.13 25.74 <	50	0180,	.9190						
600 . 1080 . 8970 698 991 14198 20.44 25.05 50 . 1169 . 8831 7.05 1020 14468 20.83 25.44 700 . 1259 . 8741 7.13 1040 14586 21.00 25.61 50 . 1349 . 8651 7.20 1063 147.64 21.26 25.87 800 . 1439 . 8561 7.28 1083 148.76 21.42 26.03 50 . 1529 . 8471 7.35 1105 19.34 21.65 26.46 900 . [619 . 8381 7.43 1125 151.41 21.80 26.41 10.95 50 . 1709 . 8291 7.51 1140 151.80 21.86 26.47 4.61 1000 . 1719 . 8201 7.60 11.50 144.74 21.50 26.51 15.5b 50 . 1889 . 8111 7.68 11.50 146.72 21.13 <td>500</td> <td>.0900</td> <td>.9100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	500	.0900	.9100						
50 . 1169 . 8831 7.05 1020 14468 20.83 25.44 700 . 1259 . 8741 7.13 1040 145.86 21.00 25.61 50 . 1349 . 8651 7.20 1063 147.64 21.26 25.87 800 . 1439 . 8561 7.28 1083 148.76 21.42 26.03 50 . 1529 . 8471 7.35 1105 19.34 21.65 26.26 900 . 1619 . 8381 7.43 1125 151.41 21.80 26.41 10.95 50 . 1709 . 8291 7.51 1140 151.80 21.86 26.47 4.61 1000 . 1199 . 8201 7.60 11.56 152.10 21.56 26.51 15.56 50 . 1889 . 8111 7.68 1150 147.74 21.56 26.17 100 . 1979 . 8021 7.77 1140 146.72 21.13	50	. 0990							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
50 .1249 .8651 7.20 1063 141.64 21.26 25.87 800 .1439 .8561 7.28 1083 148.76 21.42 26.03 50 .1529 .8471 7.35 1105 19.34 21.65 26.26 900 .1619 .8381 7.43 1125 151.41 21.80 26.41 10.95 50 .1709 .8291 7.51 1140 151.80 21.86 26.47 4.61 1000 .1719 .8201 7.60 11.65 152.11 21.90 26.51 15.56 50 .1889 .8111 7.68 1150 144.74 21.56 26.17 1100 .1979 .8021 7.77 1140 146.12 21.13 25.74 50 .269 .7931 7.86 11.22 142.75 20.56 25.17 1200 .2159 .7841 7.95 11.11 139.75 20.12 24.73									
800 .1439 .8561 7.28 1083 148.76 21.42 26.03 50 .1529 .8471 7.35 1105 19.34 21.65 26.26 900 .1619 .8381 7.43 1125 151.41 21.80 26.41 10.95 50 .1709 .8291 7.51 1140 151.80 71.86 26.47 4.61 1000 .1199 .8201 7.60 11.65 152.11 21.90 26.51 15.56 50 .1889 .8111 7.68 1150 149.74 21.56 26.17 1100 .1979 .8021 7.77 1140 146.72 21.13 25.74 50 .269 .7931 7.86 1122 142.15 20.56 25.17 1200 .2159 .7841 7.95 1111 139.75 20.12 24.73									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									·
900 . [619 . 8381 7.43 1126 151.41 21.80 26.41 10.95 50 .1709 .8291 7.51 1140 151.80 21.86 26.47 4.61 1000 . 1799 .8201 7.60 11.55 152.11 21.90 26.51 15.55 50 .1889 .8111 7.68 1150 149.74 21.56 26.17 1100 .1979 .8021 7.77 1140 146.72 21.13 25.74 50 .269 .7931 2.86 1122 142.75 20.56 25.17 1200 .2159 .7841 7.95 1111 139.75 20.12 24.73	f								· · · · · · · · · · · · · · · · · · ·
50 .1709 .8291 7.51 1140 151.80 21.86 26.47 4.61 1000 .1799 .8201 7.60 11.56 152.11 21.90 26.51 15.56 50 .1889 .8111 7.68 1150 146.74 21.56 26.17 1100 .1979 .8021 7.77 1140 146.72 21.13 25.74 50 .269 .7931 2.86 11.22 142.15 20.56 25.17 1200 .2159 .7841 7.95 11.11 139.75 20.12 24.73					1				1095
1000 .1767 .8201 7.60 11.56 152.11 .21.90 26.51 15.5b 50 .1889 .8111 7.68 11.50 149.74 21.55 26.17 1100 .1979 .8021 7.77 1140 146.72 21.13 25.74 50 .2669 .7931 7.86 11.22 142.15 20.5b 25.17 1200 .2159 .7841 7.95 11.11 139.75 20.12 24.73									
50 .1889 .8111 7.68 1150 149.74 .215b 26.17 1100 .1979 .8021 7.77 1140 146.72 21.13 25.74 50 .269 .7931 7.86 112b 142.75 20.5b 25.17 1200 .2159 .7841 7.95 1111 139.75 20.12 24.73									
1100						 			
50 .769 .793 7.86 1122 142.75 20.56 25.17 1200 .2159 .784 7.95 1111 139.75 20.12 24.73	,					 			
1200 .2159 .784 7.95 1111 139.75 20.12 24.73	1								
	·				 				
BBC&M ENCINEERING, INC.	1200	1.6157	1.704			•	1	41.10	

TRIAXIAL SHEAR TEST

(back pressure and pore pressure data)

saturation

.ROJECT:	BOTTOM A	OH TESTING -	SPORN PLA	M4_ 108	NO. 1 T- 53	33D	DATE :	10/25-27/	195
BORING:			SAMPLE :	75% Do	(32 PSi)	1	DEPTH	:	
Increment		Elapsed	Chamber	Applied	Measured	Pipe	tte	Volume	Otal
Number	Time	Time	Pressure	Back	Pore	Read		Inflow	Indicator
	110	Minutes	pst	Pressure	Pressure	C	•	cc	Reading
				psi	pst	TOP			Inches
Į	8:51 PM	0	4:0	0.00	0.00	5.0	6.3	0.00	0,100
			<u></u>			42.8	50.0	(+37.8)+(+427)	
							0	81.5	
							50.0	(0) t(19w)	= 131.5
								1315	
						0	0		
						43,3	468	(443)+(4468)	: 90.1
						-		221.6 ton	
2	9:20 PM		100	8.0	0.00	0	0	221.6 7	
					8.0	195	195	+ 39.0	2.5
3			Zo.0	18.0	8.0	19-5	195	260.6 fe	1666
	-	1		V	18.0	27.2	25.2	+13.4	
4			30.0	28.0	18.0	27.2	25.2	2740 %	the
			V	V	28-0	30.5		+ 8.6	77.5
5			40.0	40.0	28.0	3.5	30.5	282.6 %	n#/
		•		-	46.0	33.5	33.2	.+ 5.7	<i>n</i> -
	9:34PM				V	1 220	73.60	288.3 TOTA	1
10/24/95	7:10 AM		<u> </u>	V	~	37.0	37.8		
— <i>tt</i> .:-	7.7.2					27.0	37.8	+ 8.1 = 296.4 te	VX/C-
10/21/95	7:25 Am	i				3810	21.0	+1.0 -16.5=	150
- / / /						7812	21.0		
								Z80A TOTA	C 0.100
								<u> </u>	
						-	 		
						 	<u></u>		
						·	<u> </u>	<u> </u>	
					· · · · · · · · · · · · · · · · · · ·			<u> </u>	
						 		······································	
					· · · · · · · · · · · · · · · · · · ·			<u> </u>	
			<u> </u>		,	}			
							<u> </u>	ļ	
l	<u> </u>					1	L	L	L
	Dial Indicate	or reading be	fore saturati			in.			
	Dial Indicate	or reading af	ter saturatlo	0.10	0	in.			
	Change in h	eight during	saturation (al	(s) 0.00		In.			
MARKS :	10/26/95 @ 7:	1.4m B= 3	.7/5,0 = 74	16	10/27/95 a	7:30 L	m B.	= 4.3/50 = 86	6%
•							···	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>
		 		·			·		
			88C	M ENGINEERING. I	NC			_	

TRIAXIAL SHEAR TEST Preliminary Consolidation

PROJECT .	BOTTOM A	SH TEMNIC -	SpORN PLAN	√ J0В	NO. : T-533	DATE:	10/27-28	195
BORING :			SAMPLE :	75% Dp	(jz psi)	OEPTH	:	
Increment Number	Time	Elapsed Time Minutes	Chamber Pressure psl .	Applied Back Pressure psi	Measured Pore Pressure psl	Pipette Reading cc	Volume Change (aV) cc	Dial Indicator Reading Inches
	7:30 Am	0	56.0	4000	40.0	36.0	0	0.100
			/		40.2	29.3	-6.7	
2	71.7 7		72.0	40.0	44.7		/ 2	
	7:32 Am	0	74.0	····	40.Z 40.4	29.3	-6.7 -16.0	
10/28/95	9:10 Am		V	~ ~	40.0	<u>20.0</u> 15.7	-20.3	0.142
						 		
						<u> </u>		
l								
ļ	<u> </u>							
		·			•			
		1						
								
						·		
								
								
						 _		
			ore consolidation		142	in. in.	•	
		_	onsolidation (42	In.		
MARKS :	· · · · · · · · · · · · · · · · · · ·	·	·-····································					
	····		· · · · · · · · · · · · · · · · · · ·					
			880	am encineering, i	wr			

TRIAXIAL SHEAR TEST CONSOLIDATION/SATURATION CALCULATIONS PROJECT: BOTTOM ASH TESTING - SPORN PLANT JOB NO.: T-533D DATE: 10/28/95 SAMPLE: 75% DR (32 psi) BORING: ASTM D-4767 Ho - 5,600" Hc - Ho - AHO AHO - 0.042" where: No - 32.8201 in 3 Ho - Initial height of specimen - in. AVC - 1.2388,N3 AHO - change of height in specimen after consolidation - in.

Ac - (Vo - aVsat - aVc) / Hc

Vo - initial volume of specimen - in.3 ΔVc - change in volume during consolidation (burette) - in^3 ΔV sat - change in volume during saturation - \ln^3 as follows:

ΔVsat - 3Vo ΔHs / Ho

where:

AHs - change in height during saturation - in.

ΔVsat - 0.0000 /N 3

therefore i Hc - 5.558" AC - 6.2271N2

ال م ال ال الم Hs - 0

PISTON LOAD (SATURATION) = 72 PSi X.196312= 14.13 # = 64119N. PISTON (OAD (SHEAR) = 32 PS; X.1963, N2= 6.28# = 2849 gms.

A'Vc = 20,3cc = 1,2388in3

Ac = (35.8501 m3 - 0.001N2 - 1,23881N3) | 5.558" = 34.6/13,N3 /5.558" = 6.227,N2

%<u>2</u>6

PPOSSOTIES
KAYEPTAI
STREETS OF

Project: Spory Plant ask haul road - ask haul road slip Number: 3015

		:		•	•					
Borehole	sorehole DepthjASTM	ASTM SOIL Type	Nexime	Optimum Liquid Plestic Gravel Sand 44200 <.002 Specific Probity Natural	Plestic Grave	Send	828	2002 Sp	ecific (Prodity	Keturel
or Excav	Description	clessif-	Dry Density	Hoisture Liait Limit[Linit		Steve	Sieve an Gravity	revity	Hofsture
No.	ft.	ication	<u>**</u>	××	X	æ	×t	*	238/800	<u>, ≽e</u>
s- 5 619	S-5619 0.0 FAT CLAY	3	[105.2	20.6[51.6	22.3 0.3	7.0	7:26	40.3	20.6[51.6 22.3[0.3 7.0 92.7 40.3] 2.75[5.445-09[20.2	20.2

AEP Civil Engineering Laboratory, Groveport, Ohio

}

614 836 4168

JOB NO. 3015 PROJECT SPORN PLANT A	 SH HAUL ROAD		DATE:AUG_18.94_
LOCATION: ASH HAUL ROAD			
SOURCE OF MATERIAL DESCRIPTION OF MATERIAL		5619 DEPTH	0.0.ft
ASTM DESCRIPTION		FAT CLAY CH	
MAX. DRY DENSITY, pcf SPECIFIC GRAVITY	105.2 2.75	OPTIMUM MOISTURE, %	20.6
SAMPLE HGT., mm	49.670	SAMPLE DIA, mm	70.130
CHAMBER PRESSURE, psi	80.0	BACK PRESSURE, psi	70.0
B-PARAMETER	0.98	EFFECTIVE PRESSURE, psl	10.0
INITIAL HEAD, mm	1778.8		
	BEFORE	AFTER	,
WATER CONTENT, %	22.0	24.2	
WET DENSITY, pcf	125.5		
DRY DENSITY, pcf	102.8		
SATURATION, %	90.60		
VOID RATIO	0.6693		
PERMEABILITY COEFFICIEI	NT K, cm/sec	5.44E-09	

FLEXIBLE-MEMBRANE PERMEABILITY TEST

American Electric Power Service Corp. Groveport, Ohlo

	PI	RC	J	E(π		S	P)F	IN	LE	LA		L								D.		 			_								ſ	AC	TE			_0	B/.	18,	/9±	4			
	D A	ES ST	SC M	RI D	P1 E	ric SC	AC R	IP)F	OI OI	N	TE	ERI	AL	-	_			<u> </u>	_				 _			ΕA	I	CL	<u>A</u>)		<u></u>												- - 20.	. <u>6 '</u>	%	-
107.0			T	Ţ	1			E		-	T	T	 	7					E				-	E				E	K				-														
106,0			+	†							+	#	+						_												7	7	7														
105.0 D R Y			+		+						+	++++	<u>+</u>									2				-			-		4				7												
D E104.0 N S I T			+	 	+					-		+++++	+++++++++++++++++++++++++++++++++++++++							1 1 1												<u> </u>				7	Z	7									
† Y 103.0 P		-		+				•			-	1																			1	<u> </u>	田田	S 0	0.8	F 9	101	09			ココーフ	R Y	0 77	10 E		1.1.1	
n d \$102.0 P					+			1				+++++++++++++++++++++++++++++++++++++++	‡ + +		-																							7									
C101.0												+	+																														Z	^	7		
F100.0		-	-	 	+				-		 -	† † †	+	+	+	-																															:
99.0				1	1					-		T +	 	1																									-								
98.0 16	5.0		<u> </u>	‡ <u>†</u>		17.	.0				1	8.0	† † 0	#			19					20					.0				22	.0				23	.0				24	0.				25	.0
			_			·		-		_		-	M	0			Γl	JF	₹E		D Ele	El	ni Vis	T	Y I	RI	El	_	Ī	ïC	AC AC		3H	111	P							_	ſ	12	Ī		

				OMPUTATION S		-!	
PROJECT :			JOB NO. ;`	T-533D 0/	ATE	10/7/9	5
;ORING :		SAMPLE:		OE	PTH		
MATERIAL :	····						
	TA DELEBUTA)	n		MANZHUM DEHEZY (100% RELA			
Test No.	1	2	Test No.		-	1	2
Wt. Soll + Mold , gms.	9227	9214	Mèthod	INT. HT.	-	7,00 41	
Wt. Mold , gms.	6683	688	Avg. Vold Re	eading , inches	Rf	1 . 1	
Wt. Soll (Ws) , gms	2539	2526	Final Ht. of	Soil , inches	Hf	4 47	
Volumn of Mold (Vc), ft ³	.1145	.1145	Area of Sam	ple Surface, ft ²	Α	.1963	
Minimum Density (PCF) = <u>Ws(min)</u> Vc(min) X%453.6 ≪	48.9	(48.64)	Calib. Vol. of	Mold , ft ³	Vc	.1145	
RELATIVE DEAS	XTY COMPUTATION		Sott Volumn	- Hf 12 X A	۷s	.0731	
Test No.			Wt. Wet Soll	+ Mold , gms.	-	9667	
in-place density , pcf	/ 5		Wt. Mold , gr	ns.	-	৬৬৩৬	
maximum lab. density , pcf	65.20		Wt. Wet Soil	, gms	Ww	2979	
minimum lab. density , pcf			Wt. Dry Soll	_	Ws	2162	
Relative Density - %	75%		Maximum Dens	sity (PCF) = Ws(mex) mex) X 453.6	-	65.2	
		<u> </u>	730			<u></u>	
Motsture Content		ter st	@ 75%	De: Dry soil	For	L TX = 56	5.95 9MB.
Pan No. :	JW.			1962 = 35.85			•
Wet Wt. Sple. + Pan : Dry Wt. Sple. + Pan :	325						
Wt. of Pan:	248 324	, · · · · · · · · · · · · · · · · · · ·					
Wt. of Dry Soll :	212						
Wt. of Water i	804					4.	
% Molsture (mc)	37.	76				3.2	
Ws = Ww 1 + mc Bottom Insert Thickness: H _f = Ht. of Mold - Bottom H _f = 6.75 Inches	•	ess - Average	Top Void Read	ling (Rf) .		÷.	***************************************
ested By : \(\sum_{\mathcal{U}} \to \to \to \).	Coinp	outed By:	গ্ৰ	Checked B	y :_		(f

SPECIFIC GRAVITY DETERMINATION

JAR = 282.91

Steps:

JB

Tested By:

1. Weigh flask partly filled with distilled water.

- Doy 469.07
- 2. Add dry soil and weigh again; difference in weights = weight of soil added (W_s)
- 3. After soaking period, evacuate for 15 minutes, then add distilled water to calibration line.
- 4. Weigh flask, soil and H2O (Wbws) (Record temperature)
- 5. Determine from calibration chart, weight of flask and H2O for temperature recorded (W_{bw})
- 6. Specific gravity = $\frac{W_s}{W_s + W_{bw} W_{bws}}$

Job. No T-533 D			Date
Boring:	Sample:		Depth:
Material:			
Flask No.	3		
A: Flask + H ₂ O + Soil	536.03	,	
B: Flask + H ₂ O	469,98		*
C: W _s = A - B	66.05		
Temp. ^o C	28.6		
D: W _{bw} (from chart)	649.57		
E: (C+D) = $W_{bw}+W_s$	715.62		
F: W _{bws}	689.58		
'G = (E - F) = W _s + W _{bw} - W _{bws}	76.04		-
Specific Gravity = $\frac{C}{G}$	2.54		·

Computed By:

JB,

Checked By:

		T
$^{*}7_{\text{Mi}} = 7_{\text{dir}} + 7_{\text{w}} \left(\frac{e}{1+e}\right)$ tUnconfined compressive undrained shear strength s strength parameter ϕ , allth (1969), Typical values for tFrom Hunt (1984), Reprir	Consistency Hard Very stiff Stiff Medium (firm) Soft Very soft	
ve strength th su. For the although for su and d printed with	> 30 15-30 8-15 4-8 2-4	СОММО
${}^{*}V_{M1} = 7d\tau + 7\pi \left(\frac{e}{1+e}\right)$ †Unconfined compressive strength U_c is usually taken as equal to twice the cohesion c or the undrained shear strength g_c . For the drained strength condition, most clays also have the additional strength parameter ϕ , although for most normally consolidated clays $c = 0$ (Lambe and Whitman (1989)). Typical values for g_c and drained strength parameters are given in Table 3.30, Hunt (1984). From Hunt (1984). Reprinted with permission of McGraw-Hill Book Company.	Hand test Difficult to indent Indented by thumbnail Indented by thumb Molded by strong pressure Molded by slight pressure Extrudes between fingers	TABLE 3.7 COMMON PROPERTIES OF CLAY SOILS
twice the cot clays also have also h	\$/cm³ >2.0 2.06-2.24 1.92-2.08 1.76-1.92 1.60-1.76 1.44-1.60	ır.S‡
hesion c or the ve the additional be and Whitman .30, Hunt (1984):	Un kg/cm² >4.0 2.0-4.0 1.0-2.0 0.5-1.0 0.25-0.5 0-0.25	

	COMMO		rable 3.5 Es of Cohesion	LESS SOILS**		
Material	Compactness	D _R , %	N°	γ dry,† g/cm³	Void ratio	Strength:
GW:well-graded	Dense	75	90	2.21	0.22	40
gravels, gravel-	Medium dense	50	55	2.08	0.28	36
sand mixtures	Loose	25	<28	1.97	0.36	32
GP: poorly graded	Dense	75	70	2.04	0.33	38
gravels, gravel-	Medium dense	50	50	1.92	0.39	35
sand mixtures	Loose	25	<20	1.83	0.47	32
SW: well-graded sands,	Dense	75	65	1.89	0.43	37
gravelly sands	Medium dense	50	35	1.79	0.49	34
graverily barries	Loose	25	<15	1.70	0.57	30
SP: poorly graded	Dense	75	50	1.76	0.52	36
sands, gravelly	Medium dense	50	30	1.67	0.60	33
sands	Loose	25	<10	1.59	0.65	29
SM: silty sands	Dense	75	45	1.65	0.62	35
	Medium dense	50	25	1.55	0.74	32
•	Loose	25	<8	1.49	0.80	29
ML: inorganic silts, very	Dense	75	35	1.49	0.80	33
fine sands	Medium dense	50	20	1.41	0.90	31
	Loose	25	<4	1.35	1.0	27

*N is blows per foot of penetration in the SPT. Adjustments for gradation are after Burmister (1962).24 See Table 6.4 for general relationships of $D_{\rm R}$ vs. N.

†Density given is for G, = 2.68 (quartz grains).

‡Friction angle ♦ depends on mineral type, normal stress, and grain angularity as well as D_R and gradation (see Fig. 3.29).
**From Hunt (1984).¹ Reprinted with permission of McGraw-Hill Book Company.

"GEOTECHNICAL ENGINEERING TECHNIQUES AND PRACTICES", ROY. E. HUNT, MCGraw-Hill, INC., 1986, USA

Figure 8-6 gives the approximate range of k values one may expect to obtain. The coefficient of permeability is plotted on a log scale, since the range of permeabilities is so large. No other engineering property of any material exhibits such a large range of values as does the permeability of soil.

An empirical equation relating the coefficient of permeability to the effective grain size (D_{10}) from a sieve analysis was reported by A. Hazen (ca. 1892) based on work with rapid sand filters in water treatment plants. He found that for sands with D_{10} sizes between 0.1 and 3.0 mm, the coefficient of permeability could be expressed approximately† as

$$k = C(D_{10}^2)$$
 cm/s (8-9)

Figure 8-6 Typical ranges of permeability coefficients and suggested test methods

Is this equation D_{10} is the effective grain size in centimeters, with C such that k is in centimeters per second. The coefficient C varies, according to Hazen, from about 40 to 150 and the values may be taken as follows:

С	Sand (any or all of the following applies)
40-80	Very fine, well graded or with appreciable fines [(-) No. 200]
80-120	Medium coarse, poorly graded: clean, coarse but well graded
120-150	Very coarse, very poorly graded, gravelly, clean

One would expect that poorly graded sand would have a larger coefficient than well-graded materials, since the void spaces would be more ordered and larger with poorly graded soil.

An estimate of the permeability k_2 at a void ratio of e_2 when a test was performed with results of k_1 at void ratio e_1 may be made as

$$k_2 = k_1 \left(\frac{e_2}{e_1}\right)^2$$

Other equations more complicated than this have been suggested, but in the range of void ratios (0.5 to 1.1) likely to be used, this equation is considerably simpler and the results are sufficiently precise considering the precision with which k_1 can be determined.

PHYSICAL AND GEDTECHNICAL PROPERTIES OF SOILS",
JOSEPH E. BOWLES, McGRAW-HIII, Inc., 1984 Second Edition pg 2518252

LABORATORY DATA FROM: "PHILIP SPORN ELECTRIC GENERATING PLANT UNIT 5 ASH FACILITY – ENGINEERING REPORT"

PREPARED/COMPILED BY: THE GEOTECHNICAL ENGINEERING SECTION OF AMERICAN ELECTRIC POWER SERVICE CORPORATION

DATED: JULY 1998

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

SINCE 1921

Order No. 90979.030

CORPORATE CENTER 4120 AIRPORT ROAD CINCINNATI, OHIO 45226 (513) 321-5816 FAX (513) 321-0294

December 19, 1996

Mr. J.P. Amaya American Electric Power Corporation 1 Riverside Plaza Columbus, OH 45315

Re:

Laboratory Tests

Project:

Sporn Pit-Bott. Ash Pond

Certification-C-9117

LOA-002-96

Dear Mr. Amaya:

Submitted herewith is our report covering the results of seventeen (17) consolidated undrained triaxial tests with pore pressure measurements, seven (7) mechanical sieve and hydrometer and (7) Atterberg Limits. Tests were performed per your request by letter dated November 22, 1996. All samples were obtained and shipped to our laboratory from the referenced project by your representative. Cost for these tests were as outlined per Contract No. C-9117.

Should any discussion be required concerning this report, please feel free contact the undersigned. The H.C. Nutting Company thanks American Electric Power for allowing them this opportunity to be of service.

Respectfully submitted,

H.C. NUTTING COMPANY

Robert L. House,

Vice President/Lab. Director

H.C. Nutting Company 4120 Airport Road Cincinnati, Ohio 45226

12/19/69smo

American Electric Power Sporn Plt-Bott. Ash Pond Certification LOA-002-96 New Haven, WV HCN W.O. #90979.030

CLASSIFICATION TEST DATA

					Mechanical Analysis	ıl Analysis		A	Atterberg Limits	ţş	
Lab No.	Boring No.	Sample No.	Depth (Ft.)	% Gravel	% Sand	% Silt	% Clay	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index	U.S.C.S Classifi- cation
8563	96-101	ST-10	!	0	18	58	24	27	20	7	CL-ML
8564	96-104	ST-9	31.7-33.7	16	46	26	12	aN B	QN.	ΝΡ	SM
8565	96-106	ST-15	61.5-63.5	o	7	28	35	38	24	14	ರ
8566	. 96-107	ST-16	66.6-68.6	0	16	52	32	43	26	17	ರ
8567	96-108	ST-10	41.6-43.6	0	7	52	42	44	30	14	ML
8568	96-109	ST-8	26.7-28.7	0	54	43	8	a.V	AN	AN.	SM
8569	96-110	ST-18	58.6-60.6	0	19	20	31	39	27	12	ML
								Į Į	SMITTING	H C NITTING COMPANY	\ \ >

H.C. NUTTING COMPANY

Robert L. House, Vice President/Lab. Director

H.C. Nutting Company 4120 Airport Road Cincinnati, Ohio 45226

American Electric Power Sporn Plt-Bott. Ash Pond Certification LOA-002-96 New Haven, WV HCN W.O. # 90979.030

12/19/96smo

TABULATION OF UNDISTURBED TEST DATA

PAGE 1 OF 2)F 2							
Boring No.	Sample No.	Depth (Ft.)	Triaxial Compressive Strength (TSF)	Confining Pressure P.S.I.	Failure Strain (%)	Dry Density (Lbs./Cu. Ft.)	Water Content (%)	Lab No.
96-101	ST-10		4.31	14	13.4	106.5	18.5	8563
			5.69	28	15.9	113.5	16.8	=
			9.15	56	21.8	114.3	15.4	=
96-104	ST-9	31.7-33.7	3.67	14	23.4	119.4	8.2	8564
			3.22	28	24.6	113.3	9.2	11
				56			9.9	14
96-106	ST-15	61.5-63.5	2.17	21	17.5	97.1	26.5	8565
			3.69	42	15.8	98.1	26.5	16
			3.64	84	20.4	1.66	26.5	44
			₽					
96-107	ST-16	66.6-68.6	2.18	21	15.7	98.3	26.0	8566
			3.40	42	11.7	97.2	27.4	11
			5.83	84	12.1	96.5	28.4	

H.C. NUTTING COMPAN

| OSCUPACE | FOND

Robert L. House,

Vice President/Lab. Director

AEPSPP003459

Cincinnati, Ohio 45226 H.C. Nutting Company 4120 Airport Road

12/19/96smo

American Electric Power Sporn Plt-Bott. Ash Pond Certification LOA-002-96 New Haven, WV HCN W.O. # 90979.030

TABLE II

PAGE 2 OF 2

	7			T				T		_		T	T
Lab		2007	11	ż			8568			8000	=	=	
Water Content	0.70	0.4.0	38.4	36.9	2:33		4.1		20.00	20.3	28.8	27.5	67.7
Dry Density (Lbs./Cu. Ft.)	28.1	00	85.1	84.7			74.3		94.3	0.40	93.9	94 5	2:50
Failure Strain (%)	7.4		12.8	15.8					6.3		თ თ	5.7	
Confining Pressure P.S.I.	14		28	56					21		42	84	
Triaxial Compressive Strength (TSF)	1.77	100	7.75	3.82			ONI WI.		2.55	010	2.70	5.22	
Depth (Ft.)	41.6-43.6					767790	7.07-7.07		58.6-60.6				
Sample No.	ST-10					O TO	0-15		ST-18				
Boring No.	96-108					96.100	200		96-110				

H.C. NUTTING COMPAN

Robert L. House, Vice President/Lab. Director

AEPSPP003463

PROPERTIES	
MATERIAL	
Ö	
SUMMARY	

ehole	Depth ASTM	ASTM Soil Type	Type (Maximum	HT.	Optimum Liquid Plastic Gravel Sand <#200 <.002 Specific Prmblty Natural	Plastic Gravel	Sand <#200	<.002 Speci	fic[Prmblty	Natural
Excav	Description	Classif-	(Dry De	Dry Density	Moisture Limit	Limit	Sieve	mm Gravity	ity	Moisture
	ft.	ication	[pdf		9/0	<u>%</u>	% %	o/o	cm/sec	<i>‰</i>
101	5.0 SILTY SAND with GRAYEL	SM			dN	NP 29.9	51.2 18.9	_	_	6.5
101	8.5 SILTY SAND with GRAVEL	SM			ďN]	NP 17.6	44.1 38.3	_		10.0
101	16.5 SILTY SAND with GRAVEL	SM	_		dN	NP 24.7	57.3 18.0		_	4.2
101	21.5 ROORLY GRADED STAD WITH SIDT and GRAVEL	SP-SM			dN	NP 43.2	49.1 7.7		_	2.6
101	26 F. Rooke Lordon Same with sinit and Graven		_		an	NP 35.5	52.3 12.2	_		6.8
101	TO SOLD STATE OF THE PROPERTY	(CCL-MIL) SEE	SAME TOWN AS THE TANK TO THE INP	THE PARTY AND THE	ON THE PARTY IND	NP 0.4	48.7 50.9	_		110.8
101	36.5 LEAN CLAY	<u>ਜ</u>	_		126.6	16.3 0.0	10.7 89.3	_	_	117.0
102	8.5 SILTY SAND with GRAVEL	SM	_		qn	NP 31.3	49.7 19.0			[6.5
102	16.7 POORLY GRADED GRAVEL with SILT and SAND	GP-GM	_		dn]	NP 50.2	42.9 6.9	_	_	2.8
-102	26.7 SANDY SILT	MT.		•	an	NP 1.7	37.1 61.2	_	_	11.8
102	31.7 LEAN CLAY with SAND	귱	,-		127.7	18.4 0.0	24.2 75.8		_	18.4
102	36.7 SANDY LEAN CLAY	ਚੋ	_		23.8	16.2 0.0	47.3 52.7	_	_	15.6
102	41.7 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_		an	NP 38.3	52.5 9.2	_		5.3
.103	21.6 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_	-	dn)	NP 40.0	51.0 9.0		_	7.4
-103	31.6 LEAN CLAY with SAND	ਰ			28.6	18.8 0.0	26.6 73.4		_	14.5
103	41.6 SILTY SAND	ws	-		dN	0.0 WP	53.7 46.3	_	_	11.4
104	3.0 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_		ďN	NP 41.5	53.6 4.9	_	-	17.1
104	8.5 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_		- NP	8.0E GN	57.5 11.7			1.0
-104	11.7 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_		dN	NP 41.7	48.5 9.8	_		1.2
104	CASS AND CASS CASS CASS CASS CASS CASS CASS CAS	}WS			dn	NP 19.4	64.7 15.9	_		0,4
-104	CONTRACTOR OF THE CHARLES	- WS			an	NP 34.4	47.5 18.1			[2.9
104	SECTION CHAY WITH SAND ?	<u>ਜ</u>			27.2	0.0 0.61	22.8 77.2		_	18.9
-104	41.7 SANDY SILT	첫			qn	0.0 Jak	35.3 64.7			[8.1
105	3.0 POORLY GRADED SAND with SILT and GRAVEL	SP-SM	_		an	NP 40.2	53.9 5.9	_	_	1.6
-105	16.5 POORLY GRADED SAND with SILT and GRAVEL	WS-dS			an]	NP 42.7	48.8 8.5	_	_	3.1
-105	21.5 SILTY SAND with GRAVEL]MS	_		an]	0.61 AN	61.9 19.1	_	_	[6.7
-105	26.5 LEAN CLAY with SAND	ਰੋ	_		27.4	17.7[0.0	26.6 73.4			13.3
-105	36.5 LEAN CLAY	ਰੋ			28.8	18.7 0.0	4.4 95.6		_	[22.1
-105	41.5 SILTY SAND	SM.	- -		dn)	0.0 AM	51.2 48.8	_		11.9
-106	12 SITTY SAND WELL GRAVEL	SM	-		NP	NP 19.1	59.8 21.1	_		5.5
-106	21 Hall Sandy, Legn Colay	ਰੋ			[26.1	17.5 0.0	33.4 66.6		_	117.1
106	31.5 (STT.T	- TM			- AN	NP 0.0	11.1 88.9		2.29[42.6

SUMMARY OF MATERIAL PROPERTIES

OJECT: SPORN PLANT - FLY ASH POND DIKES MBER:

Excav	Depumentary Description	ASIM SOLL Type Classif-	Maximum Dry Density	Optimum Liquid Moisture Limit	Plastic Gravel Limit	Sand <#200 < Sieve	Optimum Liquid Plastic Gravel Sand <#200 <.002 Specific Prmblty Natural Coisture Limit Limit Moistur	lty Natural Moisture
1	ft.	ication	pof	<u>%</u>	% %	% %	ces/uc	
-106	51.5 SILT With SAND	MIL		dN	0.0 qN	15.2 84.8	2.42	135.7
	56.5 LEAN CLAY	ਈ	_	43.6	25.6 0.0	2.6 97.4	_	31.9
4 2 2 4 4 8	11.6 POORLY GRADED SAND with SILT and GRAVEL]WS-dS	_	<u>an</u>	NP 34.7	σ		9.8
	16 KESTANDE DERNY CLAY	ē	_	2752	18.10.0	31.9 68.1		14.0
107	2.00 fell stown were started	MT.	_	- AN	NP 0.0	35.4 64,6	_	11.4
-107	S.C. COLUMNIA WATER SAND	교	_	an)	NP 0.0	21.9 78.1	2.38	37.6
107	56.6 SILT	Œ	_	INP	NP 0.0	11.3 88.7	2.31	36.2
-107	71.6 LEAN CLAY	명	_	41.3	21.1 0.0	11.4 88.6		25.2
-108	3.0 SILTY SAND with GRAVEL	- RS	_	ďN (NP 14,8	50.6 34.6		[9.1
-108	8.5 SILTY SAND	SM	_	(NP	NP 13.7	49.9 36.4	_	6.2
(22)	ALL STRIK SOUD WILL GRANEL	Sw	_	an	NP 34.4	50.4 15.2	_	3.0
	AND SALES SAND WE'LD GRAVED	W.S.	_	qu	NP 16.9	55.3 27.8	_	1.9
	21.6 SANDY SILTY CLAY	CL-ML	_	[23.3	16.5 0.0	40.5 59.5	_	[12.2
.108	26.6 siliy sand	WS	_	an	NP 10.4	72.7 16.9	_	120.6
	41.6 LEAN CLAY	ਰ		[38.7	20.3 0.0	9.5 90.5	_	23.2
	56.6 LEAN CLAY with SAND	ਚੋ		34.9	20.1 0.0	25.3 74.7	_	25.1
-103	8.5 POORLY GRADED SAND WITH SILL and GRAVEL	SP-SM		dN)	NP 34.7	55.9 9.4		10.4
-109	11.7 SILTY SAND	SW	_	INP	NP 4.9	72.1 23.0		£.3
	A CONTRACTOR OF THE PROPERTY O		_	12229	0.0 1.10.0	40.9 5901	_	0.6
	36.7 SILT	WI .		qu	NP 0.0	8.9 91.1	2.34	[38.1
	56.7 SILT.	<u>w</u>		ďΝ)	0.0 dN	1.66 6.0	2.29	34.3
	71.7 LEAN CLAY	년	_	40.3	21.8 0.0	6.8 93.2		123.7
-110	5.0 SILTY SAND	SM		an	NP 8.8	59.5 31.7	_	[6.8
-110	Livetch SILT and SAND	GP_GM	_	- ax	NP 53.3	38.0.8.7	_	10.1
110	16.6 LEAN CLAY with SAND	કિ.		25.5	17.6 0.0	29.1 70.9	_	11.5
-110	21.6 SANDY SILTY CLAY	CL-ML	_	24.0	17.0 0.0	41.1 58.9		12.5
	31.6 LEAN CLAY with SAND	ਰੋ		130.7	18.4 0.0	18.0 82.0	_	114.7
	46.6 lean clay	ਰੋ		36.2	21.3 0.0	12.3 87.7		25.1
-110	56.6 lean clay	ਚੋ		(37.5	20.3[0.0	13.1 86.9		24.4
-110	66.6 LEAN CLAY with SAND	_ U		138.7	27.710.0	16.2 83.8	_	25.6

SIKENGTH OF GEOLOGIC MATERIALS 87 80 ENGINEERING PROPERTIES OF GEOLOGIC MATERIALS

A Correlations of SPT N values with U, for cohesive soils of varying plasticities. [From NAVFAC 1971) 111

fUnconfined compressive strength U_c is usually taken as equal to twice the cohesion c or the undrained sheat strength s_c . For the drained strength condition, most clays also have the additional strength parameter d_c although for most normally consolidated clays c = 0 (Lambe and Whitman (1989)). Typical values for s_c and drained strength parameters are given in Table 3.30, Hunt (1884): \$\frac{1}{2}\$ from Hunt (1984).

Hard
Very sliff
Stiff
Medium (firm)
Soft
Very soft

>30 15-30 8-15 4-8 2-4 8-2-4

Difficult to indent
Indented by thumbnail
Indented by thumb
Molded by strong pressure
Molded by slight pressure
Extrudes between fingers

>2.0 2.08-2.24 1.92-2.08 1.76-1.92 1.80-1.78 1.44-1.80 Consistency

Hand test

ŗį.

Table 3.7 Common properties of Clay Soils_}

	СОММО		TABLE 3.5 ES OF COHESION	LESS SOILS**		
Matorial	Competiners	D _R , %	N°	γ dry,† g/cm²	Vold ratio	Strongth:
GW:well-graded	Dense	75	90	2.21	0.22	40
gravels, gravel-	Medium dense	50	55	2.08	0.28	36
sand mixtures	Loose	25	<28	1.97	0.36	32
GP: poorly graded	Dense	75	. 70	2.04	0.33	38
gravels, gravel-	Modium dense	50	50	1.92	0.39	35
sand mixtures	Loose	25	<20	1.83	0.47	32
SW: well-graded sands,	Dense	75	65	1.89	0.43	37
gravelly sands	Medium dense	50	35	1.79	0.49	34
grand and	Loase	25	<15	1.70	0.57	30
SP: poorly graded	Dense	75	50	1.76	0.52	36
sands, gravelly	Medium dense	50	30	1.67	0.60	33
sands	Loose	25	<10	1.59	0.65	29
SM: silty sands	Dense	75	45	1.65	0.62	35
•	Medium dense	50	25	1.55	0.74	32
•	Loose	25	<8	1.49	0.80	29
ML: inorganic silts, very	. Dense	75	35	1.49	0.80	33
fine sands	Medium dense	50	20	1.41	0.90	31
	Loose	25	<4	1.35	1.0	27

*N is blows per foot of penetration in the SPT. Adjustments for gradation are after Burmister (1962). See Table 6.4 for general relationships of D_n vs. N.

(Density given is for G, = 2.68 (quartz grains).

tFriction angle \$\phi\$ depends on mineral type, normal stress, and grain angularity as well as D₈ and gradation (see Fig. 3.29).

"GEOTECHNICAL ENGINEERING TECHNIQUES AND PRACTICES", ROY. E. HUNT, McGraw-Hill, INC., 1986, USA

^{**}From Hunt (1984). Reprinted with permission of McGraw-Hill Book Company.

FIG. 11 APPROXIMATE RELATION BETWEEN STATIC CONE RESISTANCE AND AMGLE OF INTERNAL FRICTION OF SAND.

. Meyerhof (1974)

SPORN FLY TH FAGUITY

clays of moderate to low sensitivity under drained con ditions. [From Terzaghi and Peck (1967).21 Reprin-**F3.3**0 Approximate relationship between ϕ and PI ROY E. HUNT, "GeotecHUICAL ENGINEERING TECHNIQUES AND PEACHCES", McGraw-Hill, INC., 1986, USA. ted with permission of John Wiley & Sons, Inc.

AMERICAN ELECTRIC POWER SERVICE CORP.
1 RIVERSIDE PLAZA
COLUMBUS, OHIO

- ()	SHEET/	OF
DATE 5/5/97	BY PJ AMAGA	CK
COMPANY CENTRA	AL OPERATING	_G.O
PLANT SPORN		

STRENUT	A PARLAMETERS		
NORTHER	ZM DIKE:		
BORING	B-101 - ELEY 6	19 6	
DEPTH -	SHE DESCRIPTION N	Id (PCF) STREETURE PARAMETER	Source
3.0 + 4 5	Si Grandy Sand (Sm) 29	1.65g lan3 \$ - 35	TABLE 35 (1)
5.0 +0 6.5	Mc G15/1.	1,55 g/cm3 (1 = 32°	TABLE 3.5 (1)
8,5 10.0	4) Si, browlly Sant (&M) 9	1.49 d lan3 1 29 29	TARCE 3.5 (1)
11.5 16 13.0	2) Si-Granilly and (m) 65	165 g/cm 0 = 35"	TABLE 3,5 (1)
16.5 to 18.0	4 45	1.658/cm3 \$ = 35°	TAP3(4 3.5)
21.5 to 23.0	Si devancing condition to 48	1:65 8 low \$ = 35°	TABLE 35 (1)
26.5 to 280	Si former i Sand (Sile in 43 Me : 6.87).	1.65 glus \$ = 35°	TAPPLE 3.5(1)
31.5 to 33.0	Brilling SICL WSA (CL-MI) 12	2.08 glow " Uc=0.915F, \$ = 300	FIG 3.35 \$ 3,301
33.5 to 35.5	PI-710, Me. 17% ST	111 C=1600psp 0=26	PERTORMED BY H.C. Nufting.
36.5 % 38.0.	, , ,	2.08 p/cm² Vo = 1.0tsf; \$ 34°	Fig. 733(1, 3, 30
ALS 10 43.0	Basilty Sand (SM) 11	1.55 glem3 \$ = 32°	TARSLE 3.5(1)
3 455	6 GRAY Clay(CL) ST	86.0 C=750MFD=150	BEISS
16.5 to 48.0	of Gravelly say (SP) 20	1.67 g (and B = 33°)	Tros (= 3 SC)

ENGINEERING DEPT. AMERICAN ELECTRIC POWER SERVICE CORP. 1 RIVERSIDE PLAZA COLUMBUS, OHIO

SHEET 2 0E
DATE 5/15/97 BY P.J. AMAY9 CK
COMPANY CENTRAL OPERATION & G.O.
PLANT SPOKN

STR	EN	Cet	4	PA	NAMETER S					
North	\	เม	Di	KE	(Confirme)					
Bor	in	16	В	- (1	02 - Elev.	= 619	า. 6			
Deg	114		2	h	Description	N	Pal (PC	(A)	STATULETH PARAMETERS	Source
3.0 +	0 2	4.5		5	Si branchy lund (sm)	35	1,678	lum³	φ.33°	TARCE 3.5 (1)
5.0	0	6, 4			Mc = 6,5%,	47	1.769	-/cm	D = 35°	TABLE 3,5 (1
85-	o.	0.0) (·	₽) 9	bi Grovelle, Soud (ser)	35	1, 67	y (cui	D = 33°	TABLE 35 (1)
1117	to	13 7			Necr 653	60	1.76	glui	p 3 3 5	TAOSLE 3 5 (1)
16.7	to	18.	26		Mady Grand GP)	47	1.7169	lau3	Ø = 35°	TABLE 3.5(1)
517	to	25	2		nic=218%	45	1769	. (cu3	4 - 35	TABLE 3.5 (1)
26.7	Τυ	28.	2 (<u> </u>	SALLOY SIT (ML)	20	1:55	9 an	0=310	TABLE 3.5 (1)
31.7	10	32	20	11	Me = 11.8%. SANDY CLAY (CL)		1.929	lau3*	Ue 207 kg; φ=34°	Fig. 33543.30
33.	10	35	70)	PI = 9, Mc = 18.9%	\$T	141		C=1600 PSC 0=26 C'=0 0=38	- B-101 -
36.7	10	38	.2	ç	Sandy Clay (OL)	9	192	7/m	Ue -1.7 tsf; 0 = 34	Fig. 3.35 # 3.30
417	to	43	26) [FI 3 M. 6/1. Shavelly SUD(Se)	3	1.598	Jan3	D = 29°	TABLE 3.5 (1)
7.7	to!	18.	2	V	Mc 5/.	36	1.67	g cm	D = 38°	TABLE 3.5
							V ().			
			_				* Sytup	183)		

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA
COLUMBUS, OHIO

SHEETOFOF
DATE 5/15/97 BY PJ AMAYN CK
COMPANY CENTRAL OPBRAPILLY G.O.
PLANT SPORM.

54 5			*	
STIZEN	1614 HADAME	TEP_S	 	
MIES	TERN DIKE			
BORING	9 7B-103 - E	Elev.	~ 6 18.	· · · · · · · · · · · · · · · · · · ·
DEPTIX SI	M DESCRIPTION	N	SU (PCR) PARAMETER	
	123(41)1010		Od (PCR) PARAMETER	source
3.0704.50) scoraubly sand (50)	43	174 glan 0=35°	TABLE 3.5(1)
	Nc -4,-11,			
50t065 3)	3-6	1.67 g/gm = 0 = 330	tar. (1)
8.5 to 10.0	W 1, h	46	1.76 g/m3 0 = 36°	TAGLE 3,5 (1)
116to 13.11	, , , , , , , , , , , , , , , , , , ,	53	1,76 g/cm3 0 = 36°	TABUS 3.5 (1)
16.6 to 18.1	N 11 H	44	1. 16 g (cm) \$ = 35°	Thele 3,5 (1)
70.01010.		4-4-		•
21.6 023.1	N 4 N	45	1.76 p (cm3 P = 86	tanus as (1)
2///	h 1, 1		3 90 00	
26.6 to 28.1		45	1-16 g (cm ³ 0 = 36°	TABLE SIS (1)
31.6 +0 331() By SILTY Clay(a)	19	2.08 g/cm3 Va. 1.4 sq. D. 342°	Fracus 3,3513,30
	PI: 10 M. 14.5/			
36.6 to 38.6 a) Sily SAND (SM)	\$T	1.59 glow P = 29°	TAR.(4 3.5 (1)
4,6 to 43.1	" Ma. 11/. "	li i	1,598 cm3 D=296	THELE 35 (11)
	:/ViG 3 : 11 //		112 (18 (dow) () - 21	18-3001 5-3 U.J
46.6 to 18.1	SIN SAND (SM)	W	1.598/au3 \$ 29°	TAG(5 3.5 (1)
- Alexa				
			A SATURATE CETENTIAN CK	
3				

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA
COLUMBUS, OHIO

SHEET 2 OF	
DATE 5/15/97 BY PJAMONA CK	
COMPANY CENTRAL OPERATING GO	
PLANT SPORN.	

SUBJECT UNIT 5 Fly Ast Facility

00D0LC1_		311 1701019		
STRENG	TH PARAMETER	25 (continue)		
WESTERN D				
	HE (Continue)			
Boung	B-104 - ELE	y. 618.7		
DEPTHS	N DESCRIPTION	Nol (pcf) PARAMETER	Sources
0.0-151.15	Br sulty Clay (d)	12 1.92 glan	× Uc.0.8156 , 0=32°	F16UN 5 3.35 (1)
3.0 +0 4.5 3) icensuly sano (29)	32 1673/a	,3 Ø=33°	TAR-CE 3.5(1)
5.0to 6.5	n u n'	73 2.08 g/ca	360	Tarsus 3,5 (1)
82 to 100	n.me_1/, "	43 1.97 glan	ν ³ Φ ± 35°	TARUX 3.5(1)
11.7 to 13.2	Mc //.			TAPLE 3.5.(1)
16.7 +0 1820	Gr. alfinid (SM)	47 1:65 gles		TAMBO 3.17 11
21.7 to 23.2	1' Me = 31/2 in th	46 1.65 glan	Ø = 34°	TARCE 3.5(1)
	PI=8, Mc-19%	14 208 y lun3	Vc-1:0/sf ; \$ = 340	Fibure 3.35(1)
31.7 to3375	Br. Sty Sano (em)	ST 116	φ.31°	TRIANIAL TOIF HIL NOMING COME.
36.77038.2		8 116	0-29	TATE 3,5 (1)
	Dr. Songesit (ML)	11 11.6	Ø = 27°	TARCE 3.5 (1)
7 10 48.7	Br. h n	IST 116	Ø -27°	PA96 3,5 (1)
		* SATURATED		

ENGINEERING DEPT.

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA

COLUMBUS, OHIO

SHEET 3 OF
DATE 5/15/97 BY D.J. AMAG & CK
COMPANY CHENTRAL DEGRATING G.O.
PLANT SPORAL

SUBJECT UNIT 5 Fly Ast Facility

STRENGT	H PXZAMETE	Rs ((ขอบเห่นอ		
MESTERN OI	KE (CONTINUED)				
Boring ?	8-105 - EL	rv. = 6	19.3		
DEPTH SI	Description	N	(d (pcf) Strusting	nt sour	CE
3010 45 1	Di G RAVERY SOUD (SM)	21	V59 glen 0 = 31	° TAPAR	3,5 U)
5.0 to 6.5 3	Mc 2,1/,	37	1.55 g cm3 7 = 35	TABLE	3,5(1)
8.5 +0 100	h. h.	32	1.55 g len> 10 = 34	TARSUE	3.5(1)
11.5 to 13.0	U 6 . V	35	1:35g km3 0-34	TARLE	3.5(1)
16.5 6 18.0	" Me 3% "	31	155 g/cm = 3	3.° TABUS	3.5(1)
21,5 to 230 21	SILTY SAUD (SM)	23	1:69 glems \$ -3	2° TARUS	3.5(1)
26.5to 280 1	Br. sulty clay (a)	13.	2.08 g lon3 Uc. 0,95	tsf , \$ -340 Fibure	3,35(1)
31.5 to 33.5	PI + 10, Me 12.	ST	208 g/cm3 1 1/2 = 0.93	Sp. 1 34 Figure	3.35(1)
36.5 to 380 3	PI : 10", He = "22"/.	8	1,92 glans Uc=10:6	SF; \$. 34° Figure	3.35(1)
41.5 7043.06	Br. 15 il hi Sand (5 m)	9	1049 g/m2 1 0=2	7° TANK 2	(1) 214
46.5 to 120	Mic. 121/	ST	1.49 glas 0 = :	29° 1	75 V
			SATURATED .		
		· · · · · · · · · · · · · · · · · · ·			

ENGINEERING DEPT.

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA
COLUMBUS, OHIO

	SHEET	OF
DATE 5/16/97	BY PJ AMAYA	_ CK
COMPANY (STATTE	AL OPERATING	
PLANT SPORU	PLOUT	

				<u> </u>	
STRENG	TH PARAMETER	<u>.</u> S	<u> </u>		
		-	 	<u> </u>	·
South	EN DIKE!		 		
Boein	4 B-106 +	=1=1=	/10 0		
1000,74	9 0-106	- 1 B V, 1	610.7.		<u> </u>
DEPTH SH	DESCRIPTION	M	Ya (PCF)	STRENGTH PARAMETTES	Source
3.0 104.5) brankly 2 (& Soud Kin)	38	1,57 p/am3	Ø=33°	TABU 3.5(1)
5.0 to 6.5	N 6 6	54	1.65/cm3	ψ _a 35°	TARGE 3 5 (1)
			7,000	1 4 3 3 1 1	1 11200 515 (1)
8.5 to 10. (4))	37	1. 55 g/cm3	D=33°	TARLE S.JI)
11.5 16 13. 6) n Me. 6 / 4 "	25	115g on3	\$ 37	TABLE 3.5 (1)
16.5 to 18.	h	32	11 . 1	0 + 33	
10030018		92	1115 g/cm3		TABC 3.5(1)
21.5 to 23. 3	sandy Clay (GL)	ල	2089/cm3*	Uc= 13 tsc : 0= 340	FIGURE 3.35(1)
	Pt 9, Mu=11%.				
26.5 to 28.	Fly ASH (ML)	12	74	\$ = Z9°	TABLE 3.5(1)
	Me-4%				
31,5 60 33	56 - 289 Mc - 43	2	74	φ = 27°	TABC 3.5(1)
36.5 H 38	091010100031	. 2	70	77.	-A-Ci
		- -	74	V = 27°	TABCL 3.5(1)
41.57043.	. 3	2	174	D - 27°	TABCE 3.5(1)
465 fo 48.	, h	4	74	φ = 27°	74826 3.5(1)
			L	Ø=27°	
\$ \$ 53.0	SG 12-42 Me 361	4	74	45.61	TABLE 3.5 (1)
56.5 6 58	GRAY SICTY CLASS (CL)	8	1.92 g/on3*	Ne = 10 156 0 32°	Figure 3.35 (1)
	P1 = 18 Mc 32%			C: 1200 PE 0 9	TRIANIA TEST
615 463,50	PI = 14 Mr = 0.6%	ST	98	1 = 0 10 20.	Resident

ENGINEERING DEPT.

AMERICAN ELECTRIC POWER SERVICE CORP. 1 RIVERSIDE PLAZA COLUMBUS, OHIO

SHEET. 1 OF.	
DATE 5/5/97 BY PJAMAGN CK	_
COMPANY CENTRAL OPERATING G.O.	_
PLANT Spork	

		J		·	<u> </u>			-1	·		1	· · · ·	Γ	T	- ;	·	y	· · · · · ·					·• ·· ·		;	~ .	
5	TKE		N	41		+ 7	Ά-1	4_9	₩.	E	7	E	R :	5.			 	<u> </u> -			· - •	· - -	· 	!	<u>:</u>	; :	
i	=	Α	STI:	₹ 12	N	Dix	<u> </u>	-	 					 				<u></u>		<u>:</u>		ļ ·			:		
	_													 			ļ	 			 -		ļ	i			
	_₹	30	2 i	M	Ģ	B-10	57	-	E	12	٧.	7	E	18.	8	•		· ; 	-	<u>-</u>		ļ <u></u>	<u></u>		. : .	··· ··· ·	
		لم ا		-11	141	0-		-				Λ	gr .	l	١,	(1)	 	STRET SRAM	40	ri-	: -	ļ	ļ <u>-</u>	·	:		
		14	7		I N	Des	sac T	pt	1014		-		,		d	(pof)	1 1/	aram	вр	<u>ا</u> ا	 	<u> </u>		pur	204		
	3, c	1	4	ر5.	0	دک ۲۰	lty	Sa	11	se)		38	2_	1.6	7	flcm3		Ø÷	3.	3°			TA	36	3	, 5	r)
															-		ļ	4			ļ	} 		į		i	
	S . 0) [ত ৫	<u>ه، 2</u>	9	50	ma.	me	bro	leu		40		1.7	6	Jan³	-	ф -	8	(b)		<u> </u>	<u> 74</u>	Ps(t	3.	S. (1	·:
	8	5	Ы	10.			h	u				4-1	 2_	1 -	74	glam>		q.	. 3	50	+-		7.4	Ps C	3	.5	う
						<u> </u>			ļ					i_		<u> </u>					ļ	<u> </u>			:	•	
	11.	6#	G	13.1		Mz.	X./	i v				37		γ,	8	glan3		Φ-	3	30	<u> </u>	: !	7,	~√	3	.5	
	14.	7	— <u>†</u>	ĸ.l	(I)	51H			I_{n}	<u>, \</u>		18		0.10	œ!	Scm3	17	12/2	_ <u>.</u> ,e			C	l	i.	1 (2.)	, - (l	i)
			<u> </u>	<u>- </u>		P# =						<u>ن, ر</u>					Vic		')		-13						
_	21.	4	h 2	3,	9	Sand						19		1.4	1	flan ³		φ-	3	1			TA	Bli	≱.	<u>s</u> (1	
	0,0		1 1	 m l	(A)	Me	#1	1/0							; . ;.			и	. 2	 '°			1			· (1)
_	46	, Ь	1.7	Ø-1.	9	Gray	7 11	AS	n c	nlx		14		. 14	Ł!	3		<u>Ψ</u>	-: <u>-</u>	Ω			14	P-CU	3.	2 . (1	
	31.	61	<u>ل</u> م:	33.1			L	į	1		—-! i	19		70	Ł.	3		p	- 3	į°	; 		TAG	કૃદિદ	\$, 2	(1)	
		+-	7							_		İ		· 						·	ļ				-	-(1 - }	_
-	\$6	6	<i>t</i> ø	38 .		Sq.,	1		h 	70':		2		74		3	<u>}</u>	Ø	- 2	70	 		TAR	४(४४)	3 5	(F)	
	41,	6	10/	B .1		~ <u>(1,4</u>	11	·5	11	28.77		2		74		3		ø	- 7	ر دار			TAR	.(.H	5,5	(i)	
		-	_				1						i	<u> </u>	;					-			į	i			
	46	6.	to	<u>8.)</u>							 	2		7	4	3	:	Ø		27°	-		Trp	جا د	315	(1)	
	51	-	J.,	521			. h		21	\dashv		2		Π¢		<u>.</u>		ck	<u>:</u> ;, .	27°	<u></u>		*	21	: ادر	(1)	
	- 51	0	10	<u> </u>			······································	; ;		-				18 4	C. 1	- -		4		<u>. </u>	i : :		:	:	!	·	
	.56,	4	t \$	8.1		St. =	2.	31	M	34		0		٦	4	3		ψ		27°				s(e)			
		- 1		70.1		RF 20		re	<u> 25</u> 1		17	- /	3	97	-		Щ	-17-1	+ +	(g' ;	ξ.0		Lie.	331	j 3	LET H	ų l

ENGINEERING DEPT. AMERICAN ELECTRIC POWER SERVICE CORP. 1 RIVERSIDE PLAZA

DATE 5/5/97 BY PJAMAYA CI
COMPANY CENTRA! OPERATION G

	-r	<u></u>		·	- ₁			· i				,			:			pr i gue :	A FOR THE STATE OF
	4	5 T	RE	*	4	74		PA	2 41	(E	TE	2.5	(0	4+	įΛΙ	UE	Ø)	
	P	201	211	16	1	B-	10	8	+	ZL.	. 6	0	3.4	4					
	5	EF	C	_	GN	J,	ESC	rig	סל זכ	N				\ 	/d	(pc	<u>C</u> 3	STLENIGTIA- PARAMETERS	Sources
3.	0 T	D .	4.5	-	4	1 .	. 1	٠.,	ASA	(SM)		ಮ		50	0,6) .		Ø = 32°	TABLE 3.5 (1)
5.	6	6	, S			yu	<u>ve.</u> -\v	7.	n		(,)	8		60	.5			Ø = 34°	TABLE 3.5
8.	51	b	0.	D	0.	SJ.	ly.	1000 6.17	(d) (=	m))	45		1.	65	3/	પ્રત	· · · · · · · · · · · · · · · · · · ·	Tanle 3,5
<u>II.</u>	6+	p 1	\$.1			Gr.	Del	h.	5300	(S17)		40		1.	55	21	m ²	Q + 34°	Thule 3.5 li
16	,6 t	01	8.1			Gr.	Acl	45	and	(sm)		45		1.8	<u>/</u> 5	3/	47. C	p = 35	TAPLE 3.5
21.	6	to.	23.	1_	©	S _A S	1 h	•	Ay (Me	cl)		4		2. 0	69	(c)	V3	Uc Lots C 3	
26	61	δ :	28.	1	0	1	50 H	pM.	A3 H	-lsm)		8		5	2.	۷ ;		\$ ~ 29°	TARGE 3.5
31,	6	łů	33.	1			Ay ?		124	(Mi)		3			74.	3		φ = 27°	TABLE 3.5
36.	6	to	38	. 1				··-	i ı	-		2			74	3		0 · 27°	TANLE 35
41.	6 1	σ	53.)	®	"	•	٠, ١	(ÎÁV . 37		5	4	:		86	.0		C= 750ps Ps 1:	S H.C. NUTTING
56	6	to	73	. †	0	GI	LAY	5 H	ry Cl	14(a)	i	5T -1	, X ,	·	74.	2		6-100 BSE 0-1	7° Trupped Test
	ļ						·								:			Ve - 0) - Ve (1/2)	20° T17. \$.35 \$
<u> </u>																			
-														× - }		rate	,		

ENGINEERING DEPT. AMERICAN ELECTRIC POWER SERVICE CORP. 1 RIVERSIDE PLAZA COLUMBUS, OHIO

	SHEET	3	OF	
DATE 5/5/97	BY P: J.1	AMOUR	ск	
COMPANY CENTRA	L.OPEROZ	NG	G.O	
PLANT SOORN				

SUBJECT UNIT 5 Fly ASH Facility

	TALL STIP MOTE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
STREA	19TH PARAM	LETERS (CON	tinned)	
BORING	8-109 - ELEY	4 6 19 6		
	<u> </u>		CTD2×IOTH	
DEPTH	SM DESCRIPTION	16 (PCG)	STILL LATH PROMINER	Somet
3.0 to 4.5	@ 61. 20 4 5 and (50)	4-3 1,76 g/am3	φ = 35°	TA-13(E 3,5(1)
5.0 to 6.5	3 u L	39 1.76 g/cm3	φ = 34°	TAPSUS 3.5 (1)
8 5 to 10 0	" Mg . 17."	39 1.76 g/cm3	Φ = 24	TA SLE 3.5
W.7 to 13.2	SCSAND (SM)	27 1.55 g/am	Ф. 32	Tands 3.5(1)
16.7 6 182	Danier StanfacyCl	11.92/000*	Nc013 15 1 1 31°	Fig. 3.54 1 3.50 (
21.7 to 23.2		14 2,08 g/cm3	Uz = holst; D = 74	Fig. 1.2) 13.21
26.7 to 28.7	D GRAY Fly ASH(MI)	ST 74.3	Q = 3'.i	TESTING & TANK SEL
31.7 to 33.2	ν #	17 74.3	♦ = 3 /°	TARLE 3.5
36.7 to 38.2	- SO' 1 2,23" ML = 38%	2 74.3	4 - 27°	TABLE 3.5
41.7 to 43.2	N . V.	2 74.3	φ - 27°	TemsLE 3/5 (1)
467 10 48.2	h r	4 74.3	0 - 27°	Table 315 (1)
51,7 to 66.7	K h	3 74.3	Ø . 27°	TATE (1)
7.70 58,2	80 = 2111	5 74:3	P - 21°	TABLE \$.5 (1)
61,7 to 73.2	[ST 97,3	C- 700 pst \$17°	TO BAVAL THOTHEL
			il la recommendation	

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA
COLUMBUS, OHIO

	SHEET 4	OF	
DATE 5/5/97	By P.J. Amaya	CK	
COMPANY GOUTE	AL OPERATING	G.O	
PLANT SPORN			

the control of the co	II S PIY AST	· /		Table 1 To 1 To 1 To 1 To 1 To 1 To 1 To 1 T
STREN	GTH PAT	RAMETERS	(CONTINUED)	
BORING E	3-110 - 51572	602.3		
DEPTH 5	N DESCRIPTION	YU (PCF)	STRENGTH PARAMETERS!	Sounds
3.0 to 4.5 C	D BOTTON AJH (5m)	42 60.5	y. 35	TATELY 3.5 (1)
5.0 to 6.5	N j.s. Y. N	25 56.0	D = 32°	TARUE 3.5(1)
8.5 to 10.0	DILISAND & CORNING (UP)	16 1183g cm3	p = 32°	TATELE 3.5
11.6 10 13.1	Mc 1/2	17 1.88 plan	Φ = 32*	THERE 3.5 (1)
16.6 to 18.1 (D dance silly the (CL) Pt. 8, No 12/	20 2,08 g lui	Uc 1,5+5f ; #= 31"	Fig. 3, 35 4 5,2
18.6 to 20.1	Saldy districting (a)	23 208 y lous	Ver 1-7 /56 p= 21	Fig. 3,35 \$ 3 80
21.6 to 23.1	PI=7, M=12%		Ve. 13/56/10-41	
26.6 to 28.1	h h	<u> </u>	No: 1.3 1=f. 10.10	<u> </u>
	PetricH Bacclay(CL)		Ves 1.4 18 ; \$ 33°	1 V · 1 1
	D GRAY CLAY (U) PI 1 ML 15		C. 750 854 0-15 C. 0 0'. 33P	13108 -
51.6 to 73.1.8) 6 x 4 5 Hy Clay (CL)	ST. 74/2	C= 100 646 D= 11,	PHAK STRUMENT H.C. DUTTING C
	PI 17 M. CO.	9 1p	116. 12 ST P = 31"	Fig. 335 & 3 30
		*SATURATED		

ENGINEERING DEPT.

AMERICAN ELECTRIC POWER SERVICE CORP. 1 RIVERSIDE PLAZA COLUMBUS, OHIO

	SHEET	OF								
DATE 5/6/97	BY PJA	naya CK.								
COMPANY CENTRAL DEBRATINGGO.										
PLANT SPORL	1									

SUBJECT LINIT 5 Fly Ash Facility

		S	UE	JE	CT		<u> </u>	41		<u>J</u>	<u>'</u>	-7		24	ACIN!	<u>ry — </u>		_	
[-				S	HR	E	44	TH		PA	m	ME	TEE	2					
			T	O	211	14	5	I.	3	(148	8)							
	188		Dŧ	pti	+		SN	D	E 50	ui.	ptio	ม		N	Vd	(PCF)	STREN4 PARAWITER	2 / LIF	Soure <i>l</i> E
ATT THE	₹ #	3	0	to.	4.5		(3)		3,14	4.5	unc	(-	8M)	30	1/5	F&/cm	2 0,32	> !	tapole 3.4 (1)
*10 Feet SEPLACED WITH	Too Ges	g.(>	6	9. S				<u> </u>	Ľ.	ļ		(sp)	7	1,50) <i>3 lcui</i>	D = 29°		TARLY 3.5
		13	·D:	10-	4.5	55.	Ше	sil	4-50	ucl.	Grav	110	64	9	1.9	78/cn	3 \$ 32		Torsle 3.5 (1)
SAL	1	- 1	soi	l .	(999 1999	1 1	0	S	nic	ly:	s:1+	(ML)	23	1.41	s lan3	Ø. 31		Tarsls 3.5 (1)
 	1 ·	25	.O.	to	24	2			 N		i,		l 10	14	1.4	1 glan	\$ φ ₌₃ ?		TOTALE 3,5 (1)
	- -	28	· 0	to	29	۰۶۰			u	! !	h		i,	17	10	1 8/0	μ» ψ=31°		TARLE B.S (1)
; ;		33	Ο	to	34	.5	0	- 1	31	bw	N _{Si} C	lae	1	20	2.0	& glan	" Uc. J. DEF	; Ф. ₹38°	B-110 (31.6 - 331)
	. 3	8	O	40	39,	2	©	C	Kle	BNIC	છ.	١tg	Clay	17	2.08	9 km	We -1/2/5/	c; \$ = 32°	B-110(36.6-50)
<u> </u>	<u>, 4</u>	13 .	0	+	40	.0	9	(nou	η C	/n	<u>'}</u> -		9	19	2 glow	C -0 0'	:33°	B-110 (366-50)
-	5	3	ot	0 5	4.	M	(2)	Sı	ty	Sau	d ec	Sau	(Cy)	> 50.	2,05	5 g loui	3 4-3	6*	Taralda 3,5 (1)
	5	8,	0 =	<i>ъ</i> €	9.	2				N		11		\$5	2.08	g/cm3	β - 3e	6	TITBLE 3.5 (1)
j	6	3	70	66	1 . S			S	4150	<i>t</i> (ens!!	el (4P)	53	1,92	p/cm3	ψ - 3 S		TABLE 3.5 (1)
}	<u> </u> - 	3	to	6	 },S			i	k	łę	 !	A		24	1.83	g /cm²	Q = 32		TARLY 3.5(1)
	7	3.0) h c	.74	2,1			Ş	ilty	70	nd	(5	M)	29	1.53	y Com	8 =	52°	TXBGE 3.5(1)
	1	8.	7,	8	7. S				CA	. d		SA	7	77	1.6	1 a 1 , 1	d = 2	320	TABLE 85(1)

ENGINEERING DEPT.

AMERICAN ELECTRIC POWER SERVICE CORP.
1 RIVERSIDE PLAZA
COLUMBUS, OHIO

SHEET.	2of
DATE 5/6/97 BY NAME	CK
COMPANY CENTRAL DRETZ	
PLANT SPORM	

Stren	16TH PARAMETE	RS (CONTINUES)	· · · · · · · · · · · · · · · · · · ·	
Boring	9301 (1983)			
DEPTH	SH DESCRUPTION	N Yd (pcf)	STREMUTA PARAMETERS	Sounce
0.0 to 115	1) Silty Chy (a)	7 1.92 g laus*	Ve = 1.1 tsf ; \$. 30°	TAPHU 3.35 (1)
15 to 30	SALLOY CLAY (95)	30 2.24 g (cm³*	Uq. 4,0 tsf ; \$=30°	IAMU 3.35 (1)
3.0 7045	A BOTTOM ASH (SM)	25 52.2	Φ - 32°	Tanks 3,5 (1)
4.5 + 60	1) GRAY PLY AS H (MI)	42 74:3	φ = 33	TANKE 3.5 (1)
60 1075	1 P	38 74.3	Ф= 33°	TAGGE 3.5(1)
7,5 to 9,0	1	36 74.3	∂ • 33°	TABLE 3,5(1)
9,0 10,5		29 74.3	φ = 33°	TABLE 3.5(1)
10.5 70 12.0		21 74.3	\$ 2 31°	TABLE 3.5(1)
120 6135		25 74.3	Ø - 31°	TABLE '3,5 (1)
135 10 15.0		16 74.3	φ = 31	TARGE 35 CD.
150 10 165		6 74.3	φ = 27°	TABLE 3:5 (1)
16,5 to 18.0		2 74.3	\$ ~ 27°	Teble 3.5 (1)
10 10 19.5	p h h	0 74:3	p - 27°	TABLE 3.5 (1)
19.5 to 21.0	h h h	5 743	\$ = 27	TANGLE 3.5
210 to 71,5	Sann	15 1. 830 6.3	66 20	Table 2.5(1)

AMERICAN ELECTRIC POWER SERVICE CORP.

1 RIVERSIDE PLAZA

COLUMBUS, OHIO

SHEETOF	
DATE 5/7/97 BY PJAMAYACK	_
COMPANY (BAITEA ORBERTILLE G.O.	
PLANT SPOKU	

SUBJECT	UNIT 5 F	ly AsH	Facility	Praemi
STREN 4	MA PARAM	16TERS	(Continues)	
BOKING	9301 (contin	wed)		
	gu Desceiptio		nd (ecf) paramer	TH Source
22.5 to 24.01	D sandy silty c	ay(e) 11	1.928 cm. Vies 0.6	
24.0 to 27.5	Brown Filhyday	(cl) 20	2.08 g/an2 U. 11 A	Ast; Φ',33° Brill
27.5 6 31.0	h; h	" 14	2.08 g/cm3 Ue, 1.0	Kg 1, 0'. 32 B-110
310 to 34.5	A	1 16	2.08 g/an3 N. 11,-	- de; D' . 32 B- 110
34.5 to 580	u	. 16	V ! !	54; \$-32° B-110
380 to 415	h k			tsr, D. 32' 13-110
	<u> </u>			
41.5 to 45)	0		· V	Itsf ; 10 = 38 Tanca 3130 "
45.0 to 46.5	2) Sout & 6 mil	(GP) 7	1.83 g/cm² = 3	2° [7+2(is 3.5")
			X Structures	
			PK SATURATED	
	· · · · · · · · · · · · · · · · · · ·			
		!		

BORING B-106 - CPT - STUBNIGHTH PARAMETERS. -A VERAGE N = 119.716 / PH3

@ 27' ELEVATION . 591.9; (= 27' × 119.7 16) = 3,231.9 lbs / ft2 = 1.62 tsf = 1.6 Kg/cm2

USING FIG. 328 Static Come Resistance qu. NS. Dr., THE FY ASH AT THIS LOCATION HAS A RELATIVE DEPUSITY

Fuction ANGLE AND RELATIVE DENSity Relation-SHIPS FOR Granular soils, THE PLY ARH AT THIS LOCATION

HAS A P_{MAX} = 28°(1) σε φ . 30°(2)

[P BASED ON SPT = 27° to 29°]

BORING B-107 - CPT - STRENGTH PARAMETERS

AUGRAGE 1 = 1.69 Kg/cm3 = 105.7 lbs /ft3

@ 26.6', EINATION 592. Z; JV = 26.6 x 105,7 2,811.6 by/ff2 = 1.4 tsp = 1.4 Kg/cm2

USING FIG. 3.28 (1) or FIG (5) STATIC CONF RUSISTANCE GEVS. Dr, THE Fly ASA AT THIS LOCATION HAS & RELATIVE DENSITY, Dr. - 0/

FROM FIG. 3,29" FIG. 11 (2) THERLY ARH AT THIS LOCATION HAS A O'max = 28°(1) or 0.30°(2)

Ø cA020 ou SPT-27 +0 31° 1.

^{(1) &}quot;GROTEXHUIGHT ENGINEERING, TECHNIQUES AND PRACTICE" By E. HINT.

^{(2) &}quot;INTERPRETATION OF THE COLLE PENETRATION TEST" - THE DUTCH COLLE PENETROMETER CONSIDER KIT - Hogentogley & Co. IMC.

BOKING B-109 - OPT - STREFIGTH PARAMETERS.

AUGRAGE 1. 1.71 Kplam2. 106.6 165/ff3

C 26.7' Klavation, 592.9; Tv'. 20.5'x(106.6) + 6.2(106.6-62.6) =

Tv'. 2459.3 165/ff2 = 1.22 tsf = 1.2 Kg/cn

USING FIG. 3.28. (1) or FIG 5. (2) STATIC COME RECISTORIE Q. VI. Dr.,
THE FLY ASH AT THIS LOCATION HAS A RECATIVE DENSITY.
Dr. = 0%.

FROM F16.329 (1) OV F16.11(2) THE FLY ASH AT THIS LOCATION HAS A 9'MAP = 28°(1) or \$0.30'(2)

PAHES ON SOT = 27° +6 30°

LABORATORY DATA FROM: "PHILIP SPORN POWER PLANT – STABILITY ANALYSIS"

PREPARED/COMPILED BY: THE GEOTECHNICAL ENGINEERING SECTION OF AMERICAN ELECTRIC POWER SERVICE CORPORATION

DATED: MARCH 2009

Moist Moist		13.3	18.1	28.5
Prmblty	3.61E-07		μ α υ	
- G	_			
<.002 mm % SI % SI		21.3	32.6	22.6
Sand <#200 % Sieve ***********************************	14.0	79.4	33.6 99.1	9 9 9 5 8
Sand * * ********************************	52.9	20.6	57.5 0.9	61.2
tit Gravel Sand <#200 <.00.				19.6
Plastic Limit Limit	18 X	4.7.6 4.4.6	24 4 4 7 7 7 8 4 4 4 4 4 4 4 4 4 4 4 4 4	22.3 NP 19.6 19.1 0.0
Liquid Limit * *********************************	225 25 25 25 25 25 25 25 25 25 25 25 25	3278 327.55 32.55	247 255.6 26.26	31.2 31.2
Optimum Liquid Plastic Gravel Sand <#200 <.002 Prmblty Sieve mm Sp.g Prmblty Sieve mm Sp.g Prmblty Sieve mm Sp.g Cm/sec NP NP 2.2 47.6 50.2		•		
ASTM Max. Dry Class. process. pcf				
ASTM I	. d	Σ.	ដ	CL
Depth ASTM ft. Description 3.5 SANDY SILT 26.0 SILTY SAND with GRAVEL	31.0 LEAN CLAY WITH SAND	16.0 23.5 SILIY SAND 46.0 TENN ATAR	43.5 43.5 11.0 SILTY SAND 1.1.	38.0 LEAN CLAY
ample umber ====================================	2000 2000 2000 2000 2000 2000	20000 00000 00000 00000	72 - 09 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5050-2

PROJECI. SPORN PLANT - FLY ASH POND DIKES - FLY ASH POND DIKES
NUMBER:

AEP Civil Engineering Laboratory, Groveport, Ohio

JOB NO. PROJECT SPORN PLANT LOCATION: FLY ASH POND		DIKES		DATE: <u>Jul 17, 09</u>
	•		•	
SOURCE OF MATERIAL DESCRIPTION OF MATERIA		0901	DEPTH	27.0 ft.
ASTM DESCRIPTION				
MAX. DRY DENSITY, pcf SPECIFIC GRAVITY	2 70	OPTIMUM MOIST	JRE, %	
SAMPLE HGT., mm	146.130	SAMPLE DIA., mm		72.310
CHAMBER PRESSURE, psi	70 0	BACK PRESSURE	, psi	60.0
B-PARAMETER	1.00	EFFECTIVE PRES	SURE, psi	10.0
INITIAL HEAD, mm	2373.2			
	BEFORE		AFTER	
WATER CONTENT, %	26.7		27.0	
WET DENSITY, pcf	122.4			
DRY DENSITY, pcf	966			
SATURATION, %	96.79			
VOID RATIO	0.7441			

3.61E-07

PERMEABILITY COEFFICIENT K, cm/sec

FLEXIBLE-MEMBRANE PERMEABILITY TEST
American Electric Power Service Corp.
Groveport, Ohio

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Material Description: Boring PZ-0901, Shelby Tube - 26' - 28'; Lab # S-10906

Page 1 of 1

Friday August 14, 2009 Report Date:

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD

GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Page 1 of 3

Report Date: Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

, 4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

. Page 2 of 3

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPOR I, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Page 3 of 3

Report Date: Friday August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: A

Material Description: Boring PZ-0901, Shelby Tube - 26' - 28'; Lab # S-10906
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. 17-100
Mass of Container and Wet Specimen (Mcws), grams 1425.44 1429.80
Mass of Container and Over Dry Specimen (Mcs), grams 1190.68 1190.68
Mass of Container (Mc), grams 210.10 210 10
Mass of Water (Mw), grams: 234.76 239.12
Mass of Solid Particles (Ms), grams: 980.58 980.58
Moisture Content (w), % 23.94% 24.39%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2.835 2.838 2.825 2.833
Height Measurements, Inches: 5.815 5.808 5.801 5.808 Initial Volume of Specimen (Vo), In.3: 36.60
Dry Mass of Specimen After Testing, (Md), grams: 980.58
Dry Unit Weight, (y d) pcf: 102.06
Specific Gravity of the Solids, (G): 270
Volume of Solids, (Vs), Cu., In.: 22.1626
Height of Solids,(Hs),in.: 35167
Void Ratio Before Consolidation (Eo): 0.6515
Intitali Degree of Saturation: (So) 99 21%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) in. 0
Cell Pressure AfterSaturation, psl: 63 00
Back Presssure After Saturation After, psi: 60.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.016
Change in Height during Satureation, (Delta Hs) In. 0.016 Change In Volume of Specimen during Saturation (Delta Vsat), In.3: 0.302

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: A

Sample No:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),	5.79
10906	0	23.6	23.7	0.016	in.:	1 5.79
10906	0.25	23.5	23.5		Volume Change During Consolidation	
10906	0.5	23.5	23.5		(Delta Vc), In.3:	1 040
10906	1	23.4	23.4		• •	
10906	2	23.4	23.3		Cross-Sectional Area of Specimen After	6.24
10906	4	23.3	23.2		Consolidation (Ac), In.2:	1
10906	8	23.2	23			
10906	15	23.1	22.8	0.019		
10906	30	23	22.6	0.02		
10906	60	22.9	22.5	0.021		
10906	120	22.7	22.2	0.022		
10906	240	22.5	22,3	0.022		
10906	450	22.3	22.2	0.022		
10906	1440	22.2	22.2	0.023		

					-	
Sample Depth:	0	ft.	Specimen Heigi Consolidation, (l		5.79	
Cell Pressure:	65	psi	Correction for Vert Displac	amant		
Back Pressure:	60	psi	Conection to vert displac	in:	ļ	
Confining Pressure:	5	psi	Load due to Friction and	d Uplift:	16 3	lbs.
Strain Rate:	0.006	in /min.	Correction for Filter	Paper:	0	
	•		Thickness of Membrane (t	m), In.:	0.012	
				•		
•	σ1 -σ 3	. Dovin	or Stress at Failure, ksf: 2.57		Fa	illure Sketch
	01-03	= Déalg	Of Suess at Failure, Ksi. 2.57			<u> </u>
σ3 f=	Effectiv	e Consolidati	on Stress at Failure, ksf: 0.72		4	
	σl= T	otal Major Pr	ncipal Stress at Failure: 3.29			
'3f= σ3-Δυ=	Effective	Minor Princi	oal Stress at Fallure,ksf: 0.59			\ \ \ \
σ ' 1f=	Effective	Major Princip	al Stress at Failure, ksf: 3.16		V	
			Axial Strain at Failure: 15.01%			i i

Page 2 of 4 Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD
GROVEPORT, OHIO 43125

(614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: A

	<u> </u>								POHIL.	А				
Vertical Displacement Reading In.:	nt Pressi	ure Sira	in For	ce Ver or U Dis	tical for	r Area In	l penator	Water	Consolidation		Minor Principal	Major Principa	ive al	o q
0 000	62	.5 0 00	1% 0	0.0	00.00	002 6 244	0 00	0.3600	0.72	0 72	0 36	0.36	0:	36 0 00
0.003	63.	3 0.05	% 18	3 00	03 0.000	024 6.247	0 42	0.4752	0 72	1.14	0.24	0 67	04	6 0.21
0.006	63	7 0.10	% 22	4 00	06 0 000	047 6.250	0.52	0 5328	0 72	1.24	0.19	0 70	0 4	5 0 26
0 009	64	1 0.16	% 26.	0 00	09 0 000	80 6 254	0.60	05904	0.72	1 32	0 13	0.73	0 4	3 0 30
0 012	64:	2 0.20	% 27.	8 0.0	12 0.001	00 6257	0 64	0.6048	0 72	1 36	0.12	0 75	0.4	3 0.32
0 014	64.4	4 0.25	% 29.	5 00	0.001	20 6.260	0.68	0 6336	0 72	1 40	0.09	0.76	04	3 0.34
0 018	64.5	0 31	% 31.	7 001	8 0.001	51 6.263	0.73	0 6480	0.72	1.45	0 07	0.80	0.4	4 0.36
0.020	64.5	0 359	% 32 9	0 02	0.001	69 6 266	0 75	0.6480	0.72	1 47	0.07	0 83	0.4	5 0 38
0 023	64.6	0.409	6 34 6	0 02	3 0 001	97 6 269	0.79	0.6624	0 72	1 51	0.06	0.85	0 4	5 0 40
0 026	64.8	0.469	6 362	0.02	6 0 002	24 6 273	0.83	0.6912	0 72	1.55	0 03	0.86	0.44	4 0.41
0.029	64 8	0.509	6 37.4	0.02	9 0 002	6 276	0.86	0 6912	0 72	1 58	0 03	0 88	0.40	5 0 43
0.032	64.8	0.569	38.8	0 03	2 0.002	75 6.279	0.89	0 6912	0.72	1 61	0 03	0.92	0 47	7 0.44
0.035	65.0	0.61%	40.6	0 03	5 0 0030	0 6 283	0 93	0.7200	0 72	1.65	0 00	0.93	0:46	0.46
0.038	65 0	0 65%	410	0 03	8 0 0031	9 6285	0.94 .	0.7200	0.72	1 66	0.00	0 94	0 47	0 47
0.041	65.0	0 70%	42 1	0.041	0 0034	4 6.288	0.96	0 7200	0.72	1 68	0 00	0 96	0.48	0.48
0 043	65.0	0 75%	43 1	0.043	0.0036	6 6.291	0.98	0.7200	0 72	1.70	0.00	0.98	0.49	0.49
0 046	65.0	0.80%	44.2	0.046	0.0039	2 6.294	101	0.7200	0 72	1 73	000	1 01	0 50	0 50
0 049	65 0	0.85%	453	0.049	0.0041	7 6 298	1 03	0.7200	0.72	1 75	0.00	1 03	0.52	0.52
0 053	65 1	0.91%	46 5	0 053	0 0044	6 6 302	1 06	0.7344	0.72	1.78	-0 01	1.04	0.51	0.53
0.056	65 1	0.96%	47 5	0 056	0.0047	6 305	1 08	0.7344	0 72	1.80	-0.01	1.07	0 53	0 54
0.058	65 i	1.00%	48 2	0 058	0 00492	6.307	1.10	0.7344	0 72	1 82	-0 01	1 08	0 53	0.55
0.087	65 2	1 50%	56.7	0 087	0 0073	6.339	1 28	0.7488	0.72	2.00	-0 03	1.25	0.61	0.64
0.116	65.1	2 00%	64.6	0.116	0.00981	6.372	1 45	0.7344	0.72	2.17	-0.01	1.44	0.71	0 73
0 145	64.9	2 50%	70.6	0 145	0.01227	6.405	1 58	0.7056	0 72	2 30	0.01	1 59	0 80	0 79
0 174	64 8	3.00%	74.7	0 174	0.01473	6 438	1.66	0 6912	0 72	2 38	0 03	1.69	0.86	0 83
0 203	64 6	3.50%	78.1	0 203	0 01717	6.471	1 72	0.6624	0.72	2.44	0.06	1 78	0 92	0 86
0.231	64 4	4 00%	82 1	0231	0 01961	6.504	1 80	0.6336	0 72	2 52	0.09	1 88	0.99	0 90
	64.2	4 50%	85.9	0.261	0.02209	6 539	1.87	0.6048	0 72	2 59	0 12	1.98	1.05	0.93
0.290	64.0	5 01%	88 4	0.290	0.02454	6.573	1.91	0.5760	0 72	2.63	0.14	2 06	1 10	0 96
		5.50%	91 6	0318	0.02698	6 608	1 97	0 5472	0.72	2.69	. 0.17	2 14	1-16	0 98
0.347	63 7	6.00%	94.6	0 347	0.02942	6 643	2.02	0.5328	0 72	2.74	0 19	221	1.20	1.01
0.376	63 5	6.51%	97.4	0.376	0.03190	6 679	2.07	0.5040	0 72	2 79	0 22	2 28	1 25	1 03
0.406	63 2	7.01%	100.1	0.406	0 03437	6.715	2.11	0.4608	0 72	2.83	0.26	2 37	1 32	1 06
).434 (63 1	7.51%	102.8	0.434	0 03680	6.751	2.16	0 4464	0.72	2.88	0 27	2.43	1.35	.08
0.463 6	52.9	8.01%	105.7	0.463	0.03926	6 788	2.20	0 4176	0.72	2 92	0 30	2 51	1.40 1	10
		0.5000	400.0	0.400	0 04170	6 825	2.24	0.4032	0.72 2	2.96	0.32	2.66	144	120
0.492	52.8	8 50%	108 0	0 492	0 04170	0 023	4.44	V-7V52	0.72	6.90	V.32	2 55	1 44 1	12
		9.01%		0 492	0.04415	6 862		0.3744	<u>-</u>	2.99	0.35		1 48 1	
	Olsplaceme Reading In.:	0 0 0 0 0 0 0 0 0 0		Displacement Pressure Pressure Strain (E1): Add 6 and E		Displacement Reading In.	Displacement Perssure Post. Sirain (El): Adj for U Displace Membrane Area In			Vertical Displacement Pere land Pere	Vertical Pospheroment Proper Braiding Proper Braiding Proper Pospheroment Prop		Purple P	Professional Pro

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP., FACILITY

Sample No: 10906

Point: A

										Point,	А				
131.3	0.579	62.3	10 01%	115.0	0.579	0 04907	6 939	2 34	0 3312	0.72	3 06	0 39	2 73	1.56	1 17
135.5	0.637	61.9	11 01%	1192	0.637	0.05399	7017	2 39	0 2736	0 72	3 11	0 45	2.84	1.64	1.20
139 6	0.695	6.16	12 01%	123 3	0.695	0.05890	7.097	2.44	0.2304	0.72	3.16	0.49	2.93	1.71	1 22
143 7	0 753	61.4	13 01%	127 4	0 753	0 06380	7 178	2 49	0 2016	0.72	3 21	0 52	3 01	1 76	1 25
147 2	0.810	61.1	14.01%	130.9	0.810	0 06868	7 261	2.53	0 1584	0 72	3 25	0.56	3.09	1 83	1 26
151 3	0 868	60 9	15.01%	135.0	0.868	0 07360	7 347	2.57	0.1296	0 72	3 29	0 59	3 16	1.88	1 29
154 6	0.926	60 6	16.01%	138 3	0.926	0.07851	7.435	2.60	0 0864	0.72	3 32	0 63	3 23	1.93	1.30
158 0	0 984	60 4	17.02%	141 7	0 984	0 08343	7.525	2 63	0 0576	0 72	3 35	0.66	3.29	1 98	1.31
161 5	1 042	60 2	18.02%	145 2	1 042	0 08833	7 616	2 66	0 0288	0 72	3 38	0 69	3 35	2.02	1 33
165 0	1 100	59 9	19 01%	148.7	1 100	0 09322	7 710	2 68	-0 0144	0 72	3.40	0 73	3 42	2.08	1.34
168.1	1.158	59.7	20 02%	151.8	1 158	0.09814	7 807	2.70	-0 0432	0.72	3 42	0.76	3.47	2.11	1.35

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: B

7 01111.
Material Description: Boring PZ-0901, Shelby Tube - 26' - 28'; Lab # S-10906
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. 4
Mass of Container and Wet Specimen (Mcws), grams 1389.93 1393.24
Mass of Container and Over Dry Specimen (Mcs), grams 1142.12
Mass of Container (Mc), grams 213.10 213 10
Mass of Water (Mw), grams: 247.81 251.12
Mass of Solid Particles (Ms), grams: 929.02 929.02 Moisture Content (w), % 26.67% 27.03%
Moisture Content (w), % 26.67% 27.03%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2.854 2.852 2.835 2.847
Height Measurements, Inches: 5.75 5.76 5.753
Initial Volume of Specimen (Vo), In 3: 36 63
Dry Mass of Specimen After Testing, (Md), grams: 929.02
Dry Unit Weight, (y d) pcf: 96.63 Specific Gravity of the Solids, (G): 2.70
Volume of Solids, (Vs), Cu. In.: 20.9972
Height of Solids,(Hs),In.: 3 2983
Void Ratio Before Consolidation (Eo): 0.7443
Intitail Degree of Saturation: (So) 96.76%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) in. 0
Cell Pressure AfterSaturation, psi: 65.00
Back Pressure After Saturation After, psi: 60 00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.024
Change in Height during Satureation, (Delta Hs) In. 0.024
Change In Volume of Specimen during Saturation (Delta Vsat), in.3: 0.458

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: B

ample No:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),	basener appear
10906	0	23.8	23.8	0.024	in.:	5.72
10906	0.25	23.7	23.7			
10906	0.5	23.6	23.6		Volume Change During Consolidation (Delta Vc), In.3:	0 22
10906	1	23.6	23.6		(Dona vo); into	7
10906	2	23.5	23.5		Cross-Sectional Area of Specimen After	6.28
10906	4	23.4	23.3		Consolidation (Ac), In.2;	3 6.28
10906	8	23.2	23.2			
10906	15	23	23	0.028		
10906	30	22.8	22.8	0.03		
10906	60	22.6	22.5	0.031		
10906	120	22.4	22.3	0.031		
10906	240	22.3	22.2	0.032		
10906	450	22.1	22.1	0.032		
10906	1440	22	22	0.032		

Triaxial Compression ASTM D 4767	Festing					
Sample Depth:	0	ft.		ecimen Height After nsolldation, (Hc), in.:	5.72	
Cell Pressure: Back Pressure:	1	psi	Correction for	Vert Displacement,	0	
Confining Pressure:		psi psi	Load due to	Friction and Uplift:	19.1.	lbs.
Strain Rate:	0.006 In	/min	Correct	ion for Filter Paper:	0	
	σ1–σ3=	Devia	i nickness of ator Stress at Failure, ksf:	Membrane (tm), in :	0.012 F	ailure Sketch
σ3 f=			ion Stress at Failure, ksf: rincipal Stress at Failure:	1.44	. ,	
σ '3f= σ 3- Δ υ=	Effective N	linor Princ	ipal Stress at Failure,ksf:	1.02.		\bigwedge
σ ' 1f=	Effective M	ajor Princi	pal Stress at Failure, ksf: Axial Strain at Failure:	15.00%		

Page 2 of 4
Report Date: Friday, August 14, 2009

CIVIL LABORATORY AMERICAN ELECTRIC POWER SERVICE CORPORATION 4001 BIXBY ROAD

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: B

	Pn:	Vertical	T										Poin	t: E	}						
		Displacemen	Por Pressu ps	re Str	ain 1 1): Ad	orce \	'ertical	Correction for Membran ksfr	Area I	(GI- Devi Stres	ator	[Au] Induced Pore Water Pressure ksf	Consolida	tion kst	ol Total Major Principal Stress ksi	Min Princi	ctive 1 or & ipal Pri	ol' Meclive Iajor incipal ess ksf	p'	q	
	19 1	0.000	62	3 00	0%	0.0	000	0 0000	2 6.28	3 0.0	0	0.3312	1 44		1.44	11			1	10.00	
	38 3	0 003	63.6	5 0.0:	5% 1	92 0	.003	0 0002	6 6.28	5 0.4	4	0 5184	1.44		1.88	09		11		1 0 00	
	458	0 006	64 3	0.10)% 2	67 0	006	0.00048	6.289			0.6192	1.44		2 05	0.82		.36 .43	1.14	+	
	51.7	0 009	64 9	0.16	3:	2.6 0	009	0.00079	6 293	0 75	;	0.7056	1 44	-	2.19	0.8		48	1.13		
	545	0 0 1 1	65 1	0 20	% 3:	5.4 0	011	0 00096	6 295	0.81		0.7344	1.44		2.25	0 71		51	1.11		
L	58.3	0 0 1 4	65 5	0 25	% 39	2.2 0.	014	0 00123	6.299	0.89	-	0 7920	1 44		2 33	0.65		54	1 10		
<u> </u>	61.7	0.018	65 9	0 31	% 42	6 0.	018	0.00152	6.303	0 97	+	0.8496	1 44		2.41	0 59		56	1.08	-	
⊢	64.0	0.020	66.0	0 359	% 44	9 00	020 (0.00171	6 305	1 02		0.8640	1.44		2.46	0.58			1.09	0.51	
	66 0	0 023	66 3	0 409	6 46	9 00	23 (00193	6 308	1 07	+	0.9072	1.44		2 51	0.53	1			0 53	
	69 1	0 026	66 6	0 469	6 50	0 00	26 0	00224	6 312	1.14	+	0 9504	1 44	-	2.58	0 49	1.0			0.57	
- ⊩	70 5	0 029	66 6	0 50%		4 0.0	29 0	00244	6.315	1.17		0 9504	1.44		.61	0 49	1.0			0.58	
<u> </u>	73 7	0.032	66.9	0.56%		6 0.0	32 0	00273	6.318	1 24	1	0.9936	1.44	1	68	0 45	10			0.62	
- ⊢-	5.7	0.035	66.9	0.61%			35 0.	.00299	6 322	1 29	(0.9936	1 44	1 2	73	0.45	17			0.64	
<u> </u>	7.6	0 037	67.1	0 65%	-	_	— <u>I</u>	00316	6 324	1.33	1	0224	1.44	2	.77	0.42	17	5 1		0 66	
	89	0 040	67.1	0 70%	1			00342	6.327	1.36	1	.0224	1.44	2	80	0.42	1.7	8 1	.10	0.68	
ļ			67.3	0 75%				00367	6.331	1 40	1	.0512	1.44	2	84	0 39	1.7	9 i	.09	0.70	
<u> </u>			67.3	0.80%	63.6			00390	6.334	1 44	1	0512	1.44	2	88	0.39	1 8:	3 1	11 0	72	
86			67.5	0.85%	66.0				6 337	1 50	1	0800	1 44	2	94	0 36	1 80	5 1	11 0	7.75	
88			67.5 67.6	0.91%	67.6	0.05	-		6 341	1.53	1	0800	1.44	2	97	0.36	1 89	1	13 0	0.77	
90				0.96%	69.8	0 05			6.344	1.58	1	0944	1.44	3.0)2	0.35	1 93	ī	14 0	79	
105				100%	71 1	0 05	4		6.347	1 61	-	0944	1 44	3.0)5	0.35	1 95	1	15 0	.80	
117				2.00%	98 3	0 080	4		6 379	1 95		1376	1.44	33	19	0.30	2.25	1:	28 0	.97	
126				2.50%	107 8	0.114			5.411	2 20		1232	1.44	3.6	4	0.32	2 51	1.4	12 1	10	
134				3.00%	115 2	0.143			5 444	2.40	╂	1088	1 44	38	4	0.33	2.73	1:	53 1.	20	
140				50%	121 3	0.172	0 01		6.478	2.55	 	368	1 44	39	9	0.40	2.95	1.6	8 1.	27	
145				00%	126.4	0 229	0.01		.511	2 67	 	936	1.44	4.1	1	0 45	3 11	17	8 1	33	
150	1 0:			50%	131.0	0 257	0.02		579	2 76		792	1.44	4.20		0.46	3 22	18	4 1 3	38	
154	0 02	286 66			134.9	0.286	0.02	· ·	614	2.85	<u> </u>		1 44	4 29		0 52	3 36	1.9	4 1 4	12	
157.5	5 03	315 66			138 4	0315	0.02		649	2.97	0.90		1 44	435		0 53	3 45	19	9 1.4	6	
160.8	0.3	343 65			141 7	0.343			684		0.83		1.44	4.41		0.56	3 53	2 0	5 1.4	9	
163 9			_	<u> </u>	144 8	0.372	0 031		720	3.02	0.84		1.44	4.46		0.59	3.61		15		
1668	0.4	00 65.	2 6.9	99%	147.7	0.400	0 034		756	3.11	0.77		1 44	4 51		0 66	3 73		1 5	1	
169 5	0 4:	29 65		_	50.4	0 429	0.036		792	3 15	0.74		1.44	4.55		0.69	3 81		1.5		
172.1	0 4:	58 64	8 80		——J.	0 458	0.039	_ { ` `		3.19	0.69		.44	4.59		1.72	3 87	1	1.58	_1	
174.4	0.48	36 64 6	6 84				0.041			3.22	0.662		.44	4 63		.75	3 94		1 59	. 1	
1768	0.51	5 64.6	5 89				0 0439			3 25	0.662		44	4 66		78	3 99	2 39	<u> </u>		
1792	0.54	3 64.5	5 9.4	-+			0 0464			3 27	0.648		.44	4.69		.78	4.02	2.40		.1	
4			l	L.		L					0.070		7*	4.71		.79	4.07	243	1.64]	

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Po	int	: E
	11 1 4.	

										FOIII.	Þ				
181 2	0 572	64.3	10 00%	162 1	0.572	0 04886	6 981	3 29	0.6192	1 44	4.73	0.82	4.12	2.47	1.65
185 4	0 629	640	11 00%	166 3	0 629	0 05375	7 059	3.34	0.5760	1 44	4.78	0 86	4 20	2 53	1 67
189 0	0 686	63.6	11.99%	169 9	0 686	0.05862	7.139	3 37	0 5184	1.44	481	0 92	4.29	2.61	1.68
192.6	0.744	63.5	13.00%	173.5	0.744	0.06352	7.222	3 40	0.5040	[44	. 4 84	0.94	4 33	2.63	1 70
196 1	0.801	63.3	13.99%	177.0	0.801	0.06839	7.305	3 42	0.4752	1 44	4.86	0 96	4 39	2 68	171
199.5	0.858	62 9	15 00%	180.4	0.858	0 07331	7.392	3.44	0.4176	1 44	4.88	1.02	4.46	2 74	1.72
203 0	0 915	62.7	16 00%	183 9	0.915	0 07818	7.480	3.46	0.3888	1.44	4 90	1.05	4 51	2 78	1 73
206.0	0 972	62.5	16 99%	186 9	0 972	0 08305	7 569	3.47	0 3600	1.44	4.91	1 08	4 55	2.82	1 74
209 4	1 029	62.5	17 99%	190 3	1 029	0 08794	7 662	3.49	0 3600	1 44	4.93	1 08	4.57	2 82	1.74
212.4	1 087	62.3	19 00%	193 3	1 087	0 09284	7756	3 50	0 3312	1 44	4.94	1 11	4.60	2 86	1 75
215.5	1 144	62.1	20 00%	196.4	1 144	0 09773	7 853	3 50	0 3024	1 44	4 94	1.14	4 64	2.89	1 75
			·						1		1 1				. 1

Page 4 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

	Point: C
Material Description: Boring	⊇-0901, Shelby Tube - 26' - 28'; Lab # S-10906
Moisture Determination ASTM D2216	Before Testing After Testing
	Tare No. T-29 T-29
	Vet Specimen (Mcws), grams 1460 95 1459.15
Mass of Container and Ove	r Dry Specimen (Mcs), grams 1228 10 1228.10
M	ass of Container (Mc), grams 207.93 207.93
	Mass of Water (Mw), grams: 232.85 231.05
Mass of	Solid Particles (Ms), grams: 1020 17 1020.17
	Moisture Content (w), % 22 82% 22 65%
Initial Condition of Speciman ASTM D2435	(1) (2) (3) Average
Diamete	er Measurents, Inches: 2.853 2.842 2.843 2.846
Height N	leasurements, Inches: 5.85 5.842 5.853 5.848
Initial Volume o	f Specimen (Vo), In.3: 37 20
Dry Mass of Specimen After	<u>* · · · · · · · · · · · · · · · · · · ·</u>
	nit Weight, (γ d) pcf: 104.46
Specific Grav	ity of the Solids, (G): 2 70
	Solids, (Vs), Gu. In.: 23.0574
	ht of Solids,(Hs),In.: 3.6245
	Consolidation (Eo): 0.6136
Intitail Degre	e of Saturation: (So) 100.44%
Saturation - ASTM D4767 Section 8.2	
Dial Indicat	or Reading Prior to Saturation (Rb:) In. 0
	Cell Pressure AfterSaturation, psi: 80.00
Bac	k Presssure After Saturation After, psi: 60.00
	Pore Pressure Paramenter B: 1
Dial Indic	ator Reading After Saturation, (Ra) In.: -0.008
Change in H	eight during Satureation, (Delta Hs) In. -0.008
Change In Volume of Specim	en during Saturation (Delta Vsat), in.3: -0.153

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: C

D2435, Section	n- on 11.	ASTM 5:			
Sample No:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),
10906	0	23.7	23.6	-0.008	In.: 5.82
10906	0.25	23.2	23.4		Volume Change During Consolidation
10906	0.5	23.1	23.3		(Delta Vc), In 3:
10906	1	22.9	23.3		, ,,,
10906	2	22.7	23.2		Cross-Sectional Area of Specimen After
10906	4	22,3	23.1		Consolidation (Ac), In 2:
10906	8	21.9	22.9	0.004	
10906	30	21.3	22.7	0.004	
10906	60	19.3	22.4	0.000	
10906	120	18	21.5	0.012	
10906	240	17	21	0.022	
10906	450	16.3	20.7	0.026	
10906	1440	15.8	20.5	0.029	
riaxial Compr STM D 4767	esslor	Testing			
		-	ft.		Specimen Height After 5 82 Consolidation, (Hc), In.:
STM D 4767	Depti	26	ft. psi		Consolidation, (Hc), In:
STM D 4767 Sample	Depti	26 80			
STM D 4767 Sample Cell Pro Back Pro	Depti essure	26 80 s: 60	psi		Consolidation, (flc), in Correction for Vert Displacement,
STM D 4767 Sample Cell Pro	Depti essure essure essure	26 80 s: 60	psi psi		Consolidation, (Hc), In: Correction for Vert Displacement, In.:
STM D 4767 Sample Cell Pro Back Pro Confining Pro	Depti essure essure essure	26 80 60 c: 20	psi psi psi		Consolidation, (Hc), In: Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs.
STM D 4767 Sample Cell Pro Back Pro Confining Pro	Depti essure essure essure	26 80 60 c: 20	psi psi psi In/min.	riator St	Consolidation, (Hc), In.: Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), In.: 0.012
STM D 4767 Sample Cell Pro Back Pro Confining Pro	Depti essure essure essure Rate:	26 80 80 60 20 70 0006	psi psi psi In/min. 3= Dev		Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), In.: 0.012
STM D 4767 Sample Cell Pro Back Pro Confining Pro Strain i	Depti essure essure essure Rate:	26 80 60 20 0.006 on 1-of	psi psi psi In/min. B= Dev	ation St	Consolidation, (Hc), In.: Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), In.: 0.012 ress at Failure, ksf: 4.84 Failure Sketch
STM D 4767 Sample Cell Pro Back Pro Confining Pro Strain i	Deptifessure	26 80 60 20 0.006 c1-02 Effectiv	psi psi In/min. B= Dev e Consolid	ation St Principa	Consolidation, (Hc), In.: Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), In.: 0.012 ress at Failure, ksf: 4.84 Failure Sketch
STM D 4767 Sample Cell Pro Back Pro Confining Pro Strain i	Deptifessure	26 80 60 60 71-σ2 Effective	psi psi In/min. B= Dev e Consolid Total Major	ation St Principa Icipal St	Consolidation, (Hc), In.: Correction for Vert Displacement, In.: Load due to Friction and Uplift: 17.9 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), In.: 0.012 ress at Failure, ksf: 4.84 ress at Failure, ksf: 2.88 at Stress at Failure: 7.72

Page 2 of 4 Friday, August 14, 2009 Report Date:

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: C

										r ont.	U				
	Vertical Displacement Reading In.:	Pore Pressur psi	re Strain	Force	Vertica U Displac		Area In 2	(01-03) Deviator Stress ksf:	[Au] Induced Pore Water Pressure ksfi	Consolidation	ol Total Major Principal Siress ksf	o3 Effective Minor Principal Stress ksf	ol Effectiv Major Principal Stress ksi		q
179	0.000	62.0	0.00%	6 0.0	0.000	0 00000	6 304	0.00	0.2880	288	2 88	259	2 59	2.59	0.00
64 6	0.003	65 6	0 05%	6 46.7	0 003	0.0002	6 307	1.07	0.8064	2.88	3.95	2.07	3.14	2.61	0 53
75.4	0.006	67.9	0 10%	6 57.5	0 006	0 00047	6.310	1 31	1.1376	2 88	4 19	1 74	3 05	2 40	0 66
86.6	0.009	69 0	0.16%	68.7	0.009	0 00079	6314	1 57	1.2960	2.88	4 45	1.58	3.15	2 37	0 78
90.4	0 011	69 4	0.20%	72 5	0.011	0.00096	6.316	1.65	1 3536	2.88	4.53	1 53	3.18	2 35	0.83
94.7	0.014	71 0	0 25%	76.8	0.014	0.00121	6.320	1.75	1.5840	2 88	4 63	1 30	3.04	2.17	0 87
100.0	0.018	710	031%	82.1	0 018	0 00151	6.324	1 87	1.5840	2.88	4.75	1.30	3.16	2 23	0.93
103.4	0.020	71.0	0 35%	85.5	0.020	0 00169	6 326	1 94	1 5840	2.88	4 82	1 30	3 24	2.27	0.97
106 1	0 023	71 [0.40%	88 2	0.023	0 00195	6.329	2.00	1.5984	2 88	4 88	1.28	3 29	2 28	1.00
109.9	0 027	73 4	0.46%	92 0	0 027	0.00223	6.333	2.09	1.9296	2.88	4.97	0 95	3 04	2 00	1.04
12.2	0.029	72.9	0 50%	94.3	0 029	0.00243	6 336	2 14	1 8576	2 88	5 02	1 02	3 16	2.09	1 07
15.9	0.033	73.0	0.56%	98.0	0.033	0 00275	6 340	2 22	1.8720	2 88	5 10	1:01	3 23	2 12	1.11
18.3	0.036	73 2	0.61%	100.4	0.036	0 00298	6.343	2 28	1.9008	2.88	5.16	0 98	3 26	2.12	I 14
20 1	0 038	73 5	0.65%	102 2	0 038	0.00317	6.345	2 32	1 9440	2 88	5 20	0.94	3.25	2.09	1.16
22.4	0 041	73 7	0 70%	104 5	0 041	0 00340	6 348	2 37	1 9728	2 88	5 25	091	3 27	2.09	1 18
24.8	0.044	73 9	0 75%	106 9	0 044	0 00366	6 352	2 42	2.0016	2.88	5.30	0 88	3.30	2.09	1 21
27.3	0 047	74.0	0.80%	109.4	0.047	0.00391	6.355	2.48	2 0160	2 88	5 36	0.86	3 34	2 10	1.24
29.4	0 049	74.0	0.85%	111.5	0 049	0 00414	6.358	2 52	2 0160	2 88	5 40	0 86	3.39	2.12	1 26
319	0 053	74.4	0.91%	114.0	0 053	0 00443	6 362	2 58	2.0736	2 88	5.46	0 81	3.38	2 09	1 29
33.9	0.056	74 7	0.96%	1160	0.056	0 00466	6 365	2.62	2.1168	2.88	5 50	0 76	3 38	2 07	1.31
36.3	0.058	74 7	1 00%	118 4	0.058	0.00488	6.368	2 67	2 1168	2 88	5.55	076	3.44	2.10	1 34
52.8	0.087	75.9	1 50%	134.9	0 087	0.00733	6.400	3 03	2 2896	2.88	5 91	0.59	3 62	2 10	1.51
73	0116	76.5	2 00%	149.4	0116	0.00974	6 433	3.33	2.3760	2.88	621	0 50	3 84	2 17	1 67
0 1	0 146	76.5	2 50%	162 2	0.146	0 01221	6 466	3.60	2 3760	2 88	6.48	0 50	4.10	2.30	1.80
1.1	0.174	76.1	3.00%	173 2	0.174	0.01462	6.499	3 82	2 3 1 8 4	2.88	6 70	0.56	4 38	2.47	1.91
01	0.204	76 0	3.50%	182.2	0.204	0.01707	6.533	4 00	2.3040	2 88	6.88	0 58	4.58	2.58	2 00
77	0 233	75.5	4.00%	189.8	0 233	0.01952	6 567	4.14	2.2320	2 88	7.02	0.65	479	2 72 2	2 07
4.5	0 262	75.0	4 50%	1966	0 262	0 02195	6.601	4 27	2 1600	2.88	7 15	0.72	4 99	2 85 2	2.13
0:7	0.291	74 6	5 00%	2028	0 291	0.02440	6.636	4 38	2.1024	2.88	7 26	0 78	5 15	2.97 2	19
5.2	0.320	74 1	5.50%	208.3	0.320	0.02683	6.671	4 47	2.0304	2 88	7 35	0.85	5.32	3 08 2	23
7	0.349	73 9	6.00%	212.8	0.349 (0.02926	6 706	4.54	2.0016	2.88	7 42	0.88	5.42	3.15 2	.27
18	0 378	73 3	6.50%	2169	0 378	03173	6 743	4.60	1 9152	2 88	7 48	0 96	5.57	327 2	.30
3.9	0.407	729	7 00%	221 0	0 407	03416	6.779	4.66	1.8576	2 88	7.54	1 02	5 68	3 35 2	33
.5	0.437	72 7	7 50%	224.6	0.437	03661	6.815	4.71	1.8288	2.88	7 59	1.05	5.76	3.41 2	35
5	0.466	71.1	8.00%	227.6	466 0	03904	5.852	4.74	1.5984	2.88	7.62	1.28	6.03	3.65 2	.37
.5	0 495	71.0	8.50%	230.6	.495 0	.04149	5 890	4.78	1 5840	2.88	7.66	1.30	6 07	3.69 2	.39
9	0 524	710	9 00%	233 0 0	524 0	04392 (5.928	4.80	1.5840	2.88	7.68	1.30	6.10	3.70 2	40
3	0.553	710 !	9 50%	235 4 0	.553 0.	04637 6	.966	4 82	1 5840	2.88	7 70	1.30	6.12	71 2	41

Page 3 of 4

Report Date:

Friday August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10906

Point: Ç

										I OILL	•				
255.5	0 582	705	10.00%	237.6	0 582	0 04878	7004	4.84	1 5120	2.88	7.72	1.37	6 20	3.79	2 42
258 4	0 640	69.4	11 00%	240 5	0.640	0.05366	7.083	4 84	1 3536	2.88	7 72	1 53	6 36	3 94	2 42
260.4	0.699	68.6	12 00%	242 5	0.699	0 05858	7 164	4 82	1.2384	2 88	7 70	1.64	6.46	4.05	241
261.6	0.756	67.6	13.00%	243.7	0.756	0 06342	7 246	4.78	1 0944	2.88	7.66	1 79	6 57	4.18	2.39
261.4	0.815	66 9	14.00%	243.5	0 815	0 06830	7.330	4 72	0.9936	2 88	7 60	1.89	6.60	4 24	2 36
262 5	0 873	66 1	15.00%	244 6	0 873	0.07320	7.417	4 68	0.8784	2 88	7 56	2 00	6 68	4.34	2.34
263 7	0 931	65 6	16.00%	245 8	0.931	0.07806	7 505	4 64	0.8064	2.88	7.52	2 07	6.71	4.39	2 32
267 4	0 990	650	17.01%	249 5	0.990	0.08298	7 596	4 65	0 7200	2.88	7 53	2 16	6 81	4 48	2 32
269 3	1 047	64.6	18 00%	251 4	1.047	0 08782	7.688	4.62	0 6624	2 88	7 50	2 22	6 84	4.53	231
271 6	1 106	64 2	19 00%	253.7	1.106	0 09270	7.783	4.60	0.6048	2.88	7.48	2.28	6.88	4 58	2 30
274 8	1 164	64.0	20 00%	256 9	L 164	0 09760	7.880	4 60	0.5760	2.88	748	2 30	6 90	4 60	2.30

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Material Description: Boring PZ-0902, Shelby Tube - 31' - 33'; Lab # S-10918

	· · · · · · · · · · · · · · · · · · ·							 			
Point		Initial Con	ditions	r				 Final (Conditi	ons ·	
Designation	Water Content, 9	Dry Den: % pcf			ee of ation		Water ntent, %	onfining ress, (ksf)		eviator Stress	Induced Pore Pressure (ksf)
A	162%	117.4		100	.5%		6.62%	0 72		7 09	-1.15
В	172%	114.3		98.	1%		17.6%	 1 44		6 30	-0 42
С	173%	. 114.5		98.8	8%		17.4%	2 88	;	8 24	0 60
Point Designation	Axial Strain,	q, (ksf)		Ef	fective Str	esses,	(ksl)		Yotal	Stresses, (ks	D)
Designation	%		Maj	or, (ksf)	Minor,	(ksf)	p', (ksf)	Major, (ksf)	M	linor, (ksf)	p, (ksf)
Α .	15.0%	3 54	8	96	1 87		5.42	781		0 72	4 26
В	150%	3.15	8	16	1 86		5 01	7 74		1.44	4 59
c	15 0%	4.12	10).52	2.28		6 40	11 12		2.88	7 00
Shear Stress (ksf)	5 4 3 2 1 0 0		5	Norma	l Stress (10 (ksf)		15		- - - ф: - с:	40.0 ^O 2.20 ksf
oues oues	5 4 3 2 1 0 0	5			Stress (k	10	Envelope	15		φ ': c':	42.7 [©] 0.00 ksf

Page 1 of 1
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP, FACILITY

Sample No: 10918

Page 1 of 3

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP, FACILITY

Sample No: 10918

Page 2 of 3

Report Date: Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD

GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP.

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Page 3 of 3

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: A
Material Description: Boring PZ-0902, Shelby Tube - 31' - 33'; Lab # S-10918
Moisture Determination ASTM D2216 Before Testing Tare No. #28 #28
Mass of Container and Wet Specimen (Mcws), grams 1493.00 1497.17
Mass of Container and Over Dry Specimen (Mcs), grams 1313 92 1313.92
Mass of Container (Mc), grams 211.24 211.24
Mass of Water (Mw), grams: 179.08 183.25
Mass of Solid Particles (Ms), grams: 1102.68 1102.68
Molsture Content (w), % 16.24% 16.62%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2.813 2.803 2.824 2.813
Height Measurements, Inches: 5.763 5.757 5.758
Initial Volume of Specimen (Vo), In.3: 35 79
Dry Mass of Specimen After Testing, (Md), grams: 1102 68
Dry Unit Weight, (y d) pcf: 117.37
Specific Gravity of the Solids, (G): 2.70
Volume of Solids, (Vs), Cu. In.: 24.9222
Height of Solids,(Hs),In.: 4.0092
Void Ratio Before Consolidation (Eo): 0.4361
Intitali Degree of Saturation: (So) 100 54%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In.
Cell Pressure AfterSaturation, psl: 73.00
Back Presssure After Saturation After, psi: 70.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.003
Change in Height during Satureation, (Delta Hs) In. 0.003
Change In Volume of Specimen during Saturation (Delta Vsat), In.3: 0.056

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPOR 1, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: A

Sample No:	T:	Burette 2:	Burëtte3:	Rc:	Specimen Height After Consolidation, (Hc),	-	
10918	0	23.7	24.1	0.003	ln.:	1 5	5.75
10918	0.25	23.6	24		W. bassalla and B. C. and B. C.		
10918	0.5	23.6	24		Volume Change During Consolidation (Delta Vc), In 3:	0	11
10918	ı	23.5	24		(50tm 10), ii.o.	•	
10918	2	23.5	23.9		Cross-Sectional Area of Specimen After	6	.20
10918	4	23.4	23.8		Consolidation (Ac), In.2:	,	.20
10918	8	23.3	23.8				
10918	15	23.2	23.7	0.005			
10918	30	23	23.6	0.005			
10918	60	23	23.5	0.006	•		
10918	180	22.9	23.4	0.007	·		
10918	240	22.8	23.3	0.008	•		
10918	454	22.8	23.3	0.009			
10918	1440	22.9	23.1	0.01			

Sample Dept	h: 31 ft.	Specimen Helght A	
•	7	Consolidation, (Hc),	In.: "
Cell Pressur	e: 75 psi	Correction for Vert Displaceme	ent, 0'
Back Pressur	e: 70 psl		In.: ³
Confining Pressur	e: 5 psi	Load due to Friction and Up	lift: 153 lbs.
Strain Rate	: 0.006 in/min.	Correction for Filter Pap	er: 0
•		Thickness of Membrane (tm), (In.: 0.012
		Stress at Failure, ksf: 7.09	Failure Sketch
σ3 f =	Effective Consolidation	Stress at Failure, ksf: 0.72	
	σl≕ Total Major Princ	ipal Stress at Failure: 7.81	
'3f= σ3-Δ v=	Effective Minor Principal	Stress at Failure,ksf: 1.87	
σ'1f=	Effective Major Principal	Stress at Failure, ksf: 8.96	
			N V

Page 2 of 4
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200 AFP AMERICAN ELECTRIC POWER Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: A

r	Pa, 7	Variant											Point:	Α					
	Force	Vertical Displacemen Reading In.:	pı	ure Str sf: (E	ain F 1): Ad	orce 1	orrected fertical displac In.:	Correcti for Membra ksft	Area I		induce ksf: Wa	d Pore	Consolidation		Mino: Princip	ilve Effe r Maj al Princ	ipal	p'	q
	15.3	0.001	72	5 0.0	1% (0.0	.001	0 0000	5 619	9 0.00	0.36	500	0.72	0.72	0 36	03	6	0 36	0 00
	362	0.003	73	5 00:	5% 2	09 0	003	0.0002	4 6 20	1 0.49	0.50)40	0 72	1.21	0 22	07	0	0 46	0 24
	11.0	0 006	73 1			5.7 0	.006	0.0004	8 6.20	4 0.60	0.53	28	0 72	1.32	0.19	07	8		0 30
- ⊢	14.2	0.009	73 9		% 2	8.9 0	.009	0.0007	9 6.208	0.67	0.56	16	0 72	1.39	0.16	0.83	3) 49	0 33
_ ⊢	5 4	0 012	74 2		% 30	0 1 0	012	0 00099	6.211	0 70	0 60	48	0.72	1.42	0.12	0.8		46	0 35
	71	0 014	742	- I · · · ·		8 0	014	0.00123	6214	0.74	0 60	48	072	1.46	0.12	0 8	5 (48	0 37
-	8.5	0.018	74.3			2 0	018	0.00152	6 2 1 8	0 77	0 61	92	0.72	1 49	0.10	0.87	, 0	48	0 38
_	9.3	0.020	74.4				020	0 00171	6.220	0 79	0 633	36	0 72	1 51	0.09	0 87	0	48	0 39
<u> </u>	0.5	0 023	74 4	1				0 00195	6.223	0 81	0 633	36	0 72	1 53	0.09	0 90	0	49	0.41
<u> </u>	8	0.026	74.6			5 0	026	0.00224	6.227	0 84	0.662	24	0 72	1 56	0 06	0.90	0	.48	0.42
<u> </u>		0.029	74.6		4.		29 (0.00245	6 229	0 87	0.662	4	0 72	1 59	0 06	0.92	0	49 (0.43
54		0 032	74 6	0.569				00274	6 233	0 89	0 662	4	0 72	1 61	0 06	0.95	Ō	50 0	0.45
55		0.035	74 8	0619	+			00298	6.236	0 92	0 691	2	0 72	1.64	0.03	0 94	0	49 (0.46
55		0 037	74 8	0 65%	 -			.00320	6 239	0.93	0 691	2	0.72	1.65	0 03	0.96	0	50 0	.47
56		040	74 8	0 70%			-	00344	6.242	0.96	0 6912	2	0.72	1.68	0 03	0 99	0	51 0	.48
57		0.043	74 8	0 75%				.00370	6 245	0.98	0 6912	2	0 72	1 70	0 03	1.01	0.	52 0	49
58			74.8	0 80%				00396	6 248	1 00	0.6912	2	0.72	1.72	0 03	1 03	. 0	53 0	.50
59.			748	0 85%	44 3			00418	6.251	. 1 02	0.6912		0 72	1 74	0.03	1 05	0.3	4 0	51
60.			74.8	0 92%	45 4			00450	6.256	1.04	0.6912		0 72	1 76	0.03	107	0.5	5 0	52
62.5	<u> </u>		74.8	0.96%	46 2			00473	6 258	1.06	0.6912		0 72	1 78	0.03	1.09	0.5	60	53
70.4			748	1 00%	46.9		-1-	00491	6 261	1 07	0 6912		0.72	1 79	0.03	1 10	0.5	70	54
79.3			748	1.50%	55 [0 08		00740	6.293	1 25	0 6912		0.72	1.97	0.03	1 28	0.6	60	63
893			747	2.00%	64 0	0 11			6 325	1.45	0 6768		0.72	2 17	0 04	1 49	0.7	7 0.	72
99.4			74.6	2 50%	74.0	0.14			6 357	1.66	0.6624		0.72	2.38	0.06	1 72	0.8	9 0.8	33
109.4				3 00%	84.1	0.17	-		6 390	1.88	0.6336		0 72	2.60	0 09	1 97	1.0	3 0.5	14
121 9				3 50%	941	0 201	1		6.423	2.09	0.6048		0.72	2.81	0 12	2.21	1 10	1.0	15
134.4	02			4.00%	106.6	0.230			6.457	2 36	0.5616	_	0 72	3.08	0 16	2 52	1 34	1.1	8
148.2	0.2		<u> </u>	4 50%	119 1	0.259			5.490	2 62	0 5184		0.72	3 34	0 20	2 82	1 51	1.3	ī
162.0	0.2			5 01%	132 9	0.288			5 525	291	0 4608		0.72	3 63	0 26	3.17	1 71	1.4	5
175 8	j			5 50%	146 7	0.316			5.559	3 19	0.4032		0 72	391	0.32	3.51	1 91	16	ō
1900	0.37				160.5			952 6		3.48	0.3456		0 72	4.20	0 37	3.85	2 11	1.7	4
204 9	0.3			5.50%	174.7	0.374	0 03		629	3 76	0.2736	-	0 72	4.48	0.45	4.21	2.33	1 88	3
218.5	0.43				189.6	0.402	0 03		665	4.06	0.1872	0	0.72	4.78	0.53	4.59	2.56	2.03	<u> </u>
					203.2	0.431	0.03		701	4 33	0 1152	O).72	5.05	0.60	4.93	2.77	2.16	<u>;</u>]
231.6	0.46				216.3	0.460	0.03	_ ! .	737	4 58	0 0432	0	72	5 30	0.68	5 26	2.97	2 29	7
257 8	0.48				229 9	0.489	0.04		774	<u> </u> _	-0.0432	0	72 :	5 57	0.76	5.61	3.19	2.42	1
270 3	0.51				242.5	0.517	0.044		811		-0.1296	Ö	.72	5.80	0.85	5.93	3,39	2.54	1
2/03	0 54	6 68.	J 9.	50% 2	255.0	0.546	0.046	575 6	849	531	-02160	0	.72	5.03	0.94	6 25	3.59	2 66	1
																			-

Page 3 of 4

Report Date: Friday August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPOR I, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point:	Α
Point:	μ

(200 1)										Point:	А				
282.4	0.575	67.9	10.00%	267.1	0 575	0.04921	6.887	5 54	-0 3024	0 72	6 26	1 02	6 56	3 79	2 77
306 0	0.632	66.7	11 00%	290.7	0 632	0.05414	6.965	5 96	-0 4752	0 72	6.68	1 20	7 15	4.17	2.98
326 7	0.690	65.6	12 00%	311.4	0.690	0.05906	7 044	631	-0 6336	0.72	7.03	1 35	7.66		3.15
346 2	0 747	64.4	13 00%	330 9	0.747	0.06399	7 125	6 62	-0 8064	0.72	7.34	1.53	8.15		3.31
362 1	0 805	63.2	14.00%	346 8	0.805	0.06890	7207	6.86	-0 9792	0 72	7 58	1 70	8 56		3.43
378.0	0.862	62.0	15.00%	362 7	0.862	0 07383	7.292	7 09	-1.1520	0 72	781	1.87	8 96	4	3.54
392.6	0 920	60.8	16.00%	377.3	0.920	0 07875	7.379	7 28	-1.3248	0.72	8 00	2.04	9 33		3 64
407.1	0 977	597	1701%	391 8	0 977	0 08368	7 468	7.47	-1 4832	0.72	8 19	2 20	9 67		3 74
421 0	1.035	58 4	18 00%	405.7	1 035	0 08859	7 559	7.64	-1.6704	072	8 36	2 39	10 03	6.21	
434.8	1.092	57 1	1901%	419 5	1 092	0 09353	7 653	7.80	-1.8576	0.72	8 52	2.58	10 38	6.48	
147.2	1 150	55 6	20 01%	431 9	1.150	0 09846	7 749	7.93	-2.0736	0 72	8 65	2 79	10 72	6 76	

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: B

Fold: B
Material Description: Boring PZ-0902, Shelby Tube - 31' - 33'; Lab # S-10918
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. #900 #900
Mass of Container and Wet Specimen (Mcws), grams 1499 01 1502 94
Mass of Container and Over Dry Specimen (Mcs), grams 1310.23 1310.23
Mass of Container (Mc), grams 215.43 215.43
Mass of Water (Mw), grams; 188.78 192.71
Mass of Solid Particles (Ms), grams: 1094.8 1094.8
Moisture Content (w), % 17.24% 17.60%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2.849 2.839 2.834 2.841
Height Measurements, Inches: 5.756 5.766 5.761. 5.758
Initial Volume of Specimen (Vo), In.3: 36.49
Dry Mass of Specimen After Testing, (Md), grams: 1094.8
Dry Unit Weight, (y d) pcf: 114.30
Specific Gravity of the Solids, (G): 270
Volume of Solids, (Vs), Cu., In.: 24.7441
Height of Solids,(Hs),In.: 3.9043 Void Ratio Before Consolidation (Eo): 0.4747
Void Ratio Before Consolidation (Eo): 0.4747 Intitail Degree of Saturation: (So) 98 07%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In.
Cell Pressure After Saturation, psi: 75.00
Back Pressure After Saturation After, psl: 70.00 Pore Pressure Paramenter B: 0.99
Pore Pressure Paramenter B: 0.99 Dial Indicator Reading After Saturation, (Ra) in.: 0.003
Change in Height during Satureation, (Delta Hs) In. 0.003
Showaters appearates may
Change In Volume of Specimen during Saturation (Delta Vsat), In 3: 0.057

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD

GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: B

Sample No:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),	429,524	Marife Marine Marine
10918	0	24.1	23.9	0.003	In:	ļ	5.75
10918	0.25	24	23.8				
10918	0.5	24	23.8		Volume Change During Consolidation (Delta Vc), In3:	1	0 11
10918	1	. 24	23.8		(Dera VC), III3:	,	
10918	2	23.9	23.7		Cross-Sectional Area of Specimen After		
10918	4	23.9	23.7		Consolidation (Ac), In.2:	į	6.32
10918	8	23.8	23.5				
10918	15	23.7	23.4	0.005			
10918	30	23.6	23.2	0.006			
10918	60	23.5	23.1	0.006			
10918	180	23.4	23	0.007		•	• '
10918	240	23.4	22.9	0.007			
10918	452	23.3	22.9	0.008			
10918	1440	23.3	. 22.9	0.008			

Triaxial Compression ASTM D 4767	esting
Sample Depth	31 ft. Specimen Height After Consolidation, (Hc), in .:
Cell Pressure	80 psi Correction for Vert Displacement, 0
Back Pressure	70 psi In.:
Confining Pressure	10 psi Load due to Friction and Uplift: 18.6 lbs.
Strain Rate:	0.006 In/min. Correction for Filter Paper: 0
	Thickness of Membrane (tm); In.: 0012
	σ1-σ3= Deviator Stress at Fallure, ksf: 6.30 Failure Sketch
σ3 f=	Effective Consolidation Stress at Failure, ksf: 1.44
	ri= Total Major Principal Stress at Failure: 7.74
'3f= σ3−Δυ=	Effective Minor Principal Stress at Fallure,ksf: 1.86.
σ '1 f=	Effective Major Principal Stress at Fallure, ksf: 8.16
	Axial Strain at Failure: 15.00%

Page 2 of 4
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD

GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: B

49 0 0 003 74 6 0.05% 30 4 0.003 0 00022 6320 0 69 0 6624 1.44 2.13 0.78 1 47 I 61 0 0 000 75 3 0.10% 42 4 0.006 0.00047 6324 0.97 0 7632 1 44 2.41 0.68 1.64 1 67 3 0 009 75 8 0.16% 48.7 0.009 0.00076 6327 1.11 0.38352 1.44 2.55 0.60 1.71 1 70.9 0.011 75 9 0.20% 523 0.011 0.00076 6330 1.19 0.8496 1.44 2.55 0.60 1.71 1 74.7 0.015 76 2 0.55 1.61 0.015 0.015 0.014 6334 1.27 0.8928 1.44 2.71 0.55 1.85 1 77.9 0.018 76 5 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1.44	27 00
61 0 0 006 75 3 0 10% 42 4 0.006 0.00047 6324 0.97 0 7632 144 2.41 0.68 1.64 1 673 0 009 75 8 0.16% 48.7 0.009 0.00076 6327 1.11 0.8352 1.44 2.55 0.60 1.71 1 70.9 0.011 75 9 0.20% 52 3 0.011 0.00097 6330 1.19 0.8496 1.44 2.63 0.59 1.78 1 74.7 0.015 762 0.25% 56.1 0.015 0.00124 6334 1.27 0.8928 1.44 2.71 0.555 1.82 1.77 9 0.018 76 5 0.31% 593 0.018 0.00149 6337 1.35 0.9360 1.44 2.79 0.50 1.85 1 83.0 0.020 76 5 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1.44 2.84 0.50 1.90 1.85 1 83.0 0.023 76 8 0.40% 64.4 0.023 0.00193 6.343 1.46 0.9792 1.44 2.90 0.46 1.92 1.85 3 0.026 76 8 0.46% 66.7 0.026 0.0022 6346 1.51 0.9792 1.44 2.90 0.46 1.97 1.87 4.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00	07 0.0
67.3 0 009 75 8 0.16% 48 7 0.009 0.00076 6 327 1.11 0.8352 1 44 2.55 0 60 1.71 1 70.9 0.011 75 9 0 20% 52 3 0.011 0 00097 6 330 1.19 0.8496 1.44 2 63 0.39 1 78 1 74.7 0 015 76 2 0 25% 56.1 0.015 0 60124 6 334 1 27 0.8928 1.44 2 71 0.55 1.82 1 77.9 0.018 76 5 0 31% 59 3 0.018 0.00149 6 337 1 35 0 9360 1 44 2.84 0.50 1 90 1 83.0 0.023 76 8 0.40% 64.4 0.023 3 0013 3.43 1 46 0 9792 1 44 2.90 0.46 1 92 1 87.4 0.029 77 0 0 50% 68.8 0.029 0.00244 6 349 1 56 1 0080 1 44 <td< td=""><td>12 0 3</td></td<>	12 0 3
70.9 0.011 75.9 0.20% 52.3 0.011 0.0097 6.330 1.19 0.8496 1.44 2.63 0.59 1.78 1.74 74.7 0.015 76.2 0.25% 56.1 0.015 0.00124 6.334 1.27 0.8928 1.44 2.71 0.55 1.82 1. 77.9 0.018 76.5 0.31% 59.3 0.018 0.00149 6.337 1.35 0.9360 1.44 2.79 0.50 1.85 1 80.1 0.020 76.5 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1.44 2.84 0.50 1.90 1 83.0 0.023 76.8 0.40% 6.4.4 0.023 0.00193 6.343 1.46 0.9792 1.44 2.90 0.46 1.97 1. 87.4 0.029 77.0 0.56% 71.7 0.0224 6.349 1.56 1.0080 1.44 3.00	16 0.4
74.7 0 015 762 0 25% 56.1 0.015 0 00124 6 334 1.27 0.8928 1.44 2.71 0.55 1.82 1.77.9 7.79 0.018 76.5 0.31% 59.3 0.018 0.00149 6 337 1.35 0.9360 1.44 2.79 0.50 1.85 1 80.1 0.020 76.5 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1.44 2.90 0.46 1.90 1 83.0 0.023 76.8 0.46% 66.7 0.026 0.00222 6.346 1.51 0.9792 1.44 2.90 0.46 1.97 1. 87.4 0.029 77.0 0.50% 68.8 0.029 0.00244 6.349 1.56 1.0080 1.44 2.90 0.46 1.97 1. 90.3 0.032 77.0 0.56% 71.7 0.032 0.00271 6.353 1.62 1.0080 1.44	16 0 5
77.9 0.018 76 5 0.31% 59 3 0.018 0.00149 6 337 1 35 0.9360 1 44 2.79 0.50 1 .85 1 80.1 0.020 76 5 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1 44 2.84 0.50 1.90 1 83.0 0.023 76 8 0.40% 64.4 0.023 0.00193 6.343 1 46 0.9792 1 44 2.90 0.46 1.92 1. 85.3 0.026 76 8 0.46% 66.7 0.026 0.0022 6.346 1.51 0.9792 1.44 2.95 0.46 1.97 1. 87.4 0.029 77.0 0.50% 68.8 0.029 0.0024 6349 1.56 1.0080 1.44 3.00 0.43 2.05 1.3 92.4 0.035 77.2 0.61% 73.8 0.035 0.00297 6.356 1.67 1.0368 1.44	18 05
80.1 0.020 765 0.35% 61.5 0.020 0.00171 6.340 1.40 0.9360 1.44 2.84 0.50 1.90 1.83.0 0.023 768 0.40% 64.4 0.023 0.00193 6.343 1.46 0.9792 1.44 2.90 0.46 1.92 1.85.3 0.026 768 0.46% 66.7 0.026 0.0022 6.346 1.51 0.9792 1.44 2.95 0.46 1.97 1.87.4 0.029 77.0 0.50% 68.8 0.029 0.0024 6.349 1.56 1.0080 1.44 3.00 0.43 1.99 1.90 0.30 0.032 77.0 0.56% 71.7 0.032 0.00271 6.353 1.62 1.0080 1.44 3.06 0.43 2.05 1.592.4 0.035 77.2 0.61% 73.8 0.035 0.00297 6.356 1.67 1.0368 1.44 3.11 0.40 2.07 1.595.1 0.038 77.2 0.65% 76.5 0.038 0.00319 6.359 1.73 1.0368 1.44 3.17 0.40 2.13 1.599.1 0.038 77.2 0.65% 76.5 0.038 0.00319 6.359 1.73 1.0368 1.44 3.19 0.40 2.16 1.298.3 0.043 77.2 0.75% 79.7 0.043 0.00365 6.365 1.80 1.0368 1.44 3.19 0.40 2.16 1.298.3 0.043 77.2 0.55% 84.0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.20 1.3102.6 0.049 77.2 0.85% 84.0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.20 1.3102.6 0.049 77.2 0.85% 84.0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.20 1.3106.7 0.055 77.4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 3.42 0.37 2.32 1.3106.7 0.055 77.4 0.96% 88.1 0.055 0.00468 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.45 0.49 3.50 1.91141.1 0.115 77.0 2.00% 12.25 0.115 0.00975 6.446 2.73 1.0080 1.44 4.471 0.43 3.16 1.81141.1 0.115 77.0 2.00% 12.25 0.115 0.00975 6.446 2.73 1.0080 1.44 4.471 0.43 3.16 1.81144.0 1.15 77.0 2.00% 12.25 0.115 0.00975 6.446 2.73 1.0080 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.0121 6.480 3.01 0.9504 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.201 0.01462 6.513 3.27 0.9216 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.201 0.01462 6.513 3.27 0.9216 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.201 0.01462 6.513 3.27 0.9216 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.201 0.01462 6.513 3.27 0.9216 1.44 4.471 0.52 3.79 2.15180.0 0.201 760 3.50% 161.4 0.201 0.01462 6.513 3.27 0.921	8 0 6
83.0 0.023 76 8 0.40% 64.4 0.023 0.00193 6.343 1.46 0.9792 1.44 2.90 0.466 1.92 1.85 85.3 0.026 76 8 0.46% 66.7 0.026 0.00222 6.346 1.51 0.9792 1.44 2.95 0.46 1.97 1.87 87.4 0.029 77.0 0.50% 68.8 0.029 0.00244 6.349 1.56 1.0080 1.44 3.00 0.43 1.99 1.90 90.3 0.032 77.0 0.56% 71.7 0.032 0.00271 6.353 1.62 1.0080 1.44 3.00 0.43 2.05 1.1 92.4 0.035 77.2 0.65% 76.5 0.038 0.00319 6.355 1.67 1.0368 1.44 3.11 0.40 2.013 1.1 96.2 0.040 77.2 0.75% 79.7 0.043 0.00365 6.365 1.80 1.0368 1.44	8 0 67
85.3 0.026 76 8 0.46% 66.7 0.026 0.0222 6346 1.51 0.9792 1.44 2.95 0.46 1.97 1.87 87.4 0.029 77.0 0.50% 68.8 0.029 0.00244 6349 1.56 1.0080 1.44 3.00 0.43 1.99 1.99 90.3 0.032 77.0 0.56% 71.7 0.032 0.00271 6353 1.62 1.0080 1.44 3.06 0.43 2.05 1.2 92.4 0.035 77.2 0.61% 73.8 0.035 0.00297 6356 1.67 1.0368 1.44 3.11 0.40 2.07 1.2 95.1 0.038 77.2 0.65% 76.5 0.038 0.00319 6359 1.73 1.0368 1.44 3.17 0.40 2.13 1.2 96.2 0.040 77.2 0.76% 77.7 0.043 0.00359 6362 1.75 1.0368 1.44	0 0.70
87.4 0 029 77 0 0 50% 68.8 0.029 0 00244 6 349 1 56 1 0080 1 44 3.00 0 43 1 .99 1 90.3 0.032 77 0 0 56% 71.7 0 032 0.00271 6 353 1 62 1 0080 1 44 3 06 0 43 2 05 1 92.4 0.035 77 2 0 61% 73.8 0 035 0.00297 6 356 1 67 1 0368 1.44 3 11 0.40 2 07 1 2 95.1 0.038 772 0 65% 76.5 0 038 0.00319 6 359 1 73 1 0368 1 44 3 17 0.40 2.13 1 96.2 0.040 77.2 0 75% 79 0.043 0.0035 3 6362 1 75 1 0368 1 44 3 .19 0.40 2.16 1 2 98.3 0.043 77.2 0 75% 79 7 0.043 0.0036 6 365 1 80 1 0368 1 44	9 0.73
90.3 0.032 77 0 0.56% 71.7 0.032 0.00271 6.353 1.62 1.0080 1.44 3.06 0.43 2.05 1.3 92.4 0.035 77 2 0.61% 73.8 0.035 0.00297 6.356 1.67 1.0368 1.44 3.11 0.40 2.07 1.3 95.1 0.038 77 2 0.65% 76.5 0.038 0.00319 6.359 1.73 1.0368 1.44 3.17 0.40 2.13 1.3 96.2 0.040 77 2 0.70% 77 6 0.040 0.00339 6.362 1.75 1.0368 1.44 3.19 0.40 2.16 1.2 98.3 0.043 77 2 0.75% 79 7 0.043 0.00365 6.365 1.80 1.0368 1.44 3.24 0.40 2.20 1.3 100.9 0.046 77 2 0.80% 82 3 0.046 0.00390 6.368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77 2 0.85% 84 0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.30 1.3 104.8 0.052 77 4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 3.42 0.37 2.32 1.3 106.7 0.055 77.4 0.96% 88.1 0.055 0.00468 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3 108.3 0.058 77 4 1.00% 89 7 0.058 0.0048 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3 126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44 3.85 0.39 2.80 1.5 141.1 0.115 77.0 2.00% 12.2.5 0.115 0.00975 6.446 2.73 1.0080 1.44 4.17 0.43 3.16 1.8 154.6 0.144 76.6 2.50% 1.36 0.144 0.01221 6.480 3.01 0.9504 1.44 4.45 0.49 3.50 1.9 167.2 0.172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0.9216 1.44 4.471 0.52 3.79 2.15 180.0 0.201 760 3.50% 161.4 0.201 0.01706 6.547 3.53 0.8640 1.44 5.21 0.65 4.42 2.55 202.7 0.259 751 4.50% 184.1 0.259 0.02194 6.615 3.99 0.7344 1.44 5.43 0.71 4.69 2.77	2 0 76
92.4 0.035 77 2 0.61% 73.8 0.035 0.00297 6356 1.67 1.0368 1.44 3.11 0.40 2.07 1.73 95.1 0.038 77.2 0.65% 76.5 0.038 0.00319 6359 1.73 1.0368 1.44 3.17 0.40 2.13 1.2 96.2 0.040 77.2 0.75% 77.6 0.040 0.00339 6362 1.75 1.0368 1.44 3.19 0.40 2.16 1.2 98.3 0.043 77.2 0.75% 79.7 0.043 0.00365 6365 1.80 1.0368 1.44 3.24 0.40 2.20 1.3 100.9 0.046 77.2 0.80% 82.3 0.046 0.00390 6368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77.2 0.85% 84.0 0.049 0.0414 6372 1.89 1.0368 1.44	1 0 78
95.1 0.038 77.2 0.65% 76.5 0.038 0.00319 6.359 1.73 1.0368 1.44 3.17 0.40 2.13 1.26 96.2 0.040 77.2 0.70% 77.6 0.040 0.00339 6.362 1.75 1.0368 1.44 3.19 0.40 2.16 1.2 98.3 0.043 77.2 0.75% 79.7 0.043 0.00365 6.365 1.80 1.0368 1.44 3.24 0.40 2.20 1.3 100.9 0.046 77.2 0.80% 82.3 0.046 0.0390 6.368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77.2 0.85% 84.0 0.049 0.0041 6.372 1.89 1.0368 1.44 3.33 0.40 2.30 1.3 104.8 0.052 77.4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 <td>4 0.81</td>	4 0.81
96 2 0.040 77.2 0.70% 77.6 0.040 0.0339 6.362 1.75 1.0368 1.44 3.19 0.40 2.16 1.2 98.3 0.043 77.2 0.75% 79.7 0.043 0.00365 6.365 1.80 1.0368 1.44 3.24 0.40 2.20 1.3 100.9 0.046 77.2 0.80% 82.3 0.046 0.00390 6.368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77.2 0.85% 84.0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.30 1.3 104.8 0.052 77.4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 3.38 0.37 2.36 1.3 106.7 0.055 77.4 0.96% 88.1 0.055 0.00488 6.381 2.02 1.0656 1.44 </td <td>4 0.83</td>	4 0.83
98.3 0.043 77.2 0.75% 79.7 0.043 0.00365 6.365 1.80 1.0368 1.44 3.24 0.40 2.20 1.3 100.9 0.046 77.2 0.80% 82.3 0.046 0.00390 6.368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77.2 0.85% 84.0 0.049 0.00414 6.372 1.89 1.0368 1.44 3.33 0.40 2.30 1.3 104.8 0.052 77.4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 3.38 0.37 2.32 1.3 106.7 0.055 77.4 0.96% 88.1 0.055 0.00468 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3 108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44	7 0 86
100.9 0.046 77.2 0.80% 82.3 0.046 0.00390 6.368 1.86 1.0368 1.44 3.30 0.40 2.26 1.3 102.6 0.049 77.2 0.85% 84.0 0.049 0.0414 6.372 1.89 1.0368 1.44 3.33 0.40 2.30 1.3 104.8 0.052 77.4 0.91% 86.2 0.052 0.0043 6.375 1.94 1.0656 1.44 3.42 0.37 2.32 1.3 106.7 0.055 77.4 0.96% 88.1 0.055 0.00488 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3 108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3 126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44	8 0 88
102.6 0 049 77 2 0 85% 84 0 0 049 0 00414 6.372 1 89 1.0368 1.44 3 33 0.40 2.30 1 3 104 8 0.052 77.4 0 91% 86.2 0.052 0 00443 6.375 1.94 1.0656 1 44 3 38 0 37 2.32 1 3 106.7 0.055 77.4 0.96% 88.1 0.055 0 00468 6 379 1 98 1.0656 1 44 3.42 0 37 2 36 1 3 108.3 0 058 77.4 1 00% 89 7 0.058 0 00488 6 381 2.02 1.0656 1 44 3.46 0.37 2 39 1 3 126.1 0.086 77.3 1.50% 107.5 0.086 0 00729 6 413 2.41 1.0512 1.44 3 85 0.39 2.80 1 5 141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6 446 2.73 1 0080 1 44 4.17 0 43 3 16 1.8 154.6 0 144 76.	0.90
104 8 0.052 77.4 0.91% 86.2 0.052 0.00443 6.375 1.94 1.0656 1.44 3.38 0.37 2.32 1.3 106.7 0.055 77.4 0.96% 88.1 0.055 0.00468 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3 108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3 126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44 3.85 0.39 2.80 1.5 141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6.446 2.73 1.0080 1.44 4.17 0.43 3.16 1.8 154.6 0.144 76.6 2.50% 136.0 0.144 0.01221 6.480 3.01 0.9504	0.93
106.7 0.055 77.4 0.96% 88.1 0.055 0.0468 6.379 1.98 1.0656 1.44 3.42 0.37 2.36 1.3 108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3 126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44 3.85 0.39 2.80 1.5 141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6.446 2.73 1.0080 1.44 4.17 0.43 3.16 1.8 154.6 0.144 76.6 2.50% 136.0 0.144 0.01221 6.480 3.01 0.9504 1.44 4.45 0.49 3.50 1.9 167.2 0.172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0.9216	0 95
108.3 0.058 77.4 1.00% 89.7 0.058 0.00488 6.381 2.02 1.0656 1.44 3.46 0.37 2.39 1.3 126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44 3.85 0.39 2.80 1.5 141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6.446 2.73 1.0080 1.44 4.17 0.43 3.16 1.8 154.6 0.144 76.6 2.50% 136.0 0.144 0.01221 6.480 3.01 0.9504 1.44 4.45 0.49 3.50 1.9 167.2 0.172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0.9216 1.44 4.71 0.52 3.79 2.1 180.0 0.201 76.0 3.50% 161.4 0.201 0.01706 6.547 3.53 0.8640 <t< td=""><td>0.97</td></t<>	0.97
126.1 0.086 77.3 1.50% 107.5 0.086 0.00729 6.413 2.41 1.0512 1.44 3.85 0.39 2.80 1.5 141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6.446 2.73 1.0080 1.44 4.17 0.43 3.16 1.8 154.6 0.144 76.6 2.50% 136.0 0.144 0.01221 6.480 3.01 0.9504 1.44 4.45 0.49 3.50 1.9 167.2 0.172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0.9216 1.44 4.71 0.52 3.79 2.15 180.0 0.201 76.0 3.50% 161.4 0.201 0.01706 6.547 3.53 0.8640 1.44 4.97 0.58 4.11 2.34 191.8 0.230 75.5 4.00% 173.2 0.230 0.01950 6.581 3.77 0.7920	0 99
141.1 0.115 77.0 2.00% 122.5 0.115 0.00975 6.446 2.73 1 0080 1 44 4.17 0.43 3 16 1.8 154.6 0 144 76.6 2.50% 136.0 0 144 0.01221 6.480 3.01 0 9504 1 44 4.45 0 49 3.50 1 99 167.2 0 172 76.4 3.00% 148.6 0.172 0.01462 6.513 3 27 0 9216 1 44 4 71 0.52 3.79 2 19 180.0 0 201 760 3.50% 161.4 0.201 0 01706 6.547 3 53 0.8640 1 44 4 97 0 58 4 11 2 36 191.8 0 230 75.5 4 00% 173.2 0 230 0.01950 6.581 3 77 0.7920 1.44 5 21 0 65 4.42 2 53 202.7 0 259 75.1 4 50% 184.1 0 259 0 0 2194 6 615 3 99 0.7344 1.44 5 43 0.71 4 69 2.70	1.01
154.6 0 144 76.6 2.50% 136 0 0 144 0.01221 6 480 3.01 0 9504 1 44 4.45 0 49 3.50 1 9 167.2 0 172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0 9216 1 44 4.71 0.52 3.79 2 1: 180.0 0 201 76.0 3.50% 161.4 0.201 0 01706 6.547 3.53 0.8640 1 44 4.97 0.58 4.11 2.36 191.8 0 230 75.5 4 00% 173.2 0 230 0.01950 6.581 3.77 0.7920 1.44 5.21 0.65 4.42 2.53 202.7 0 259 75.1 4.50% 184.1 0 259 0 02194 6.615 3.99 0.7344 1.44 5.43 0.71 4.69 2.70	1 20
167.2 0 172 76.4 3.00% 148.6 0.172 0.01462 6.513 3.27 0 9216 1.44 4.71 0.52 3.79 2.15 180.0 0 201 76.0 3.50% 161.4 0.201 0 01706 6.547 3.53 0.8640 1.44 4.97 0.58 4.11 2.34 191.8 0 230 75.5 4.00% 173.2 0.230 0.01950 6.581 3.77 0.7920 1.44 5.21 0.65 4.42 2.53 202.7 0 259 75.1 4.50% 184.1 0.259 0.02194 6.615 3.99 0.7344 1.44 5.43 0.71 4.69 2.70	1 36
180.0 0 201 76 0 3.50% 161 4 0 201 0 01706 6.547 3 53 0 8640 1 44 4 97 0 58 4 11 2 36 191 8 0 230 75 5 4 00% 173 2 0 230 0.01950 6.581 3 77 0.7920 1 44 5 21 0 65 4 42 2 53 202 7 0 259 75 1 4.50% 184.1 0 259 0 02194 6.615 3 99 0.7344 1 .44 5 .43 0.71 4 .69 2.70	1.51
191 8 0 230 75 5 4 00% 173 2 0 230 0.01950 6.581 3 77 0.7920 1.44 5 21 0 65 4.42 2 53 202 7 0 259 75 1 4.50% 184.1 0 259 0 02194 6.615 3 99 0.7344 1.44 5 43 0.71 4 69 2.70	1.64
202 7 0 259 75 1 4.50% 184.1 0 259 0 02194 6.615 3 99 0.7344 1.44 5.43 0.71 4.69 2.70	1 77
	1 89
1913 91 0 0 0 97 1 74 6 15 200 1 104 6 1 0 000 1 0 00 10 6 6 6 6 6 6 6 6 6 6	1.99
	2.09
	2.19
\ 	2 29
	2 37
	2.45
<u> </u>	2.52
267.5 0.460 72.2 8.00% 248.9 0.460 0.03900 6.867 5.18 0.3168 1.44 6.62 1.12 6.30 3.71	2 59
275.0 0.489 71.9 8.50% 2564 0.489 0.04145 6.905 5.31 0.2736 1.44 6.75 1.17 6.47 3.82	2 65
281.4 0 518 71.3 9.01% 262 8 0.518 0.04390 6.943 5.41 0.1872 1.44 6.85 1.25 6.66 3.96	2.70
288.3 0.546 70 9 9.50% 269.7 0.546 0.04632 6.981 5.52 0.1296 1.44 6.96 1.31 6.83 4.07	2.76

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

										Point:	В				
294.5	0575	70.6	10 00%	275 9	0.575	0 04873	7019	5.61	0 0864	1.44	7 05	1.35	6.97	4 16	2.81
306.4	0.633	69 9	11.01%	287 8	0.633	0.05365	7.099	5 78	-0 0144	1 44	722	1 45	7 24	4 35	2.89
318.1	0.690	69 4	12 00%	299.5	0 690	0.05848	7 179	5 95	-0.0864	1.44	739	1.53	7.48	4 50	2 97
328.6	0.748	68.7	13 00%	3100	0.748	0 06338	7 262	6.08	-0 1872	1.44	7.52	1 63	771	4.67	3.04
338 6	0 805	67.9	14 00%	320 0	0.805	0 06824	7 346	6.20	-0 3024	1.44	7 64	1.74	7.95	4 84	3 10
347 6	0 863	67.1	15.00%	329.0	0.863	0.07313	7.433	6 30	-0.4176	1.44	7 74	1 86	8 16	5.01	3.15
356 8	0 920	66.3	16.00%	338.2	0 920	0.07799	7 52 l	6 40	-0.5328	1 44	7.84	1.97	8.37	5 17	3 20
365 6	0.978	65 5	17.00%	347 0	0.978	0.08288	7.612	6.48	-0.6480	1.44	7 92	2.09	8 57	5 33	3.24
373 3	1.035	64 6	18.00%	354 7	1.035	0 08776	7.705	6 54	-0.7776	1.44	7 98	2 22	8 76	5.49	3.27
381.9	1 092	63 7	19 00%	363 3	1 092	0.09261	7 799	6 62	-0.9072	1 44	8 06	2.35	8.96	5 65	3 31
389.9	1 150	62 9	20 00%	371.3	1 150	0.09747	7 897	6.67	-1 0224	1.44	8 1 1	2.46	9 14	5.80	3.34

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: C
Material Description: Boring PZ-0902, Shelby Tube - 31' - 33'; Lab # S-10918
Moisture Determination ASTM D2216 Before Testing Tare No. R-3 R-3
Mary Co. 1
Mass of Container and Over Dry Specimen (Mcs), grams 1515.47 1516.93 Mass of Container and Over Dry Specimen (Mcs), grams 1324.08 1324.08
Mass of Container (Mc), grams 216.28 216.28
Mass of Water (Mw), grams: 191.39 192.85
Mass of Solid Particles (Ms), grams: 1107.8
Moisture Content (w), % 17.28% 17.41%
Initial Condition of Speciman ASTM D2435 [1] (2) (3) Average
Diameter Measurents, Inches: 2.843 2.848 2.837 2.843
Height Measurements, Inches: 5.801 5.809 5.811 5.807
Initial Volume of Specimen (Vo), In.3: 36 85
Dry Mass of Specimen After Testing, (Md), grams: 1107.8
Dry Unit Weight, (y d) pcf: 114.51 Specific Gravity of the Sollds, (G): 270
Volume of Solids, (Vs), Cu. In.: 25.0379
Height of Solids,(Hs),in.: 3.9451
Void Ratio Before Consolidation (Eo): 0.4720
Intitail Degree of Saturation: (So) 98.84%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In. 0
Cell Pressure AfterSaturation, psi: 90.00
Back Presssure After Saturation After, psl: 70.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: -0.004
Change in Height during Satureation, (Delta Hs) In0.004
Change In Volume of Specimen during Saturation (Delta Vsat), In 3: -0.076

Page 1 of 4

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

ASTM

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Consolidation-

D2435, Section 11.5:

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: C

Sample No:	: T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Ho),
10918	0	23.8	23.7	-0.004		5.79
10918	I	23.5	23,5		Volume Change During Cornell detic	
10918		23.5	23.5		Volume Change During Consolidation (Delta Vc), In.:	
10918		23.5	23.4		(•
10918	-	23.4	23.3		Cross-Sectional Area of Specimen Afte	
10918	4	23.2	23.1		Consolidation (Ac), In.2	2: 1
10918	8	23.1	22.8			
10918	15	22.9	22.4	0.005		
10918	30 60	22.5	21.4	0.008		
10918	180	21.2	20.6	0.017		
10918	240	21.1	20.4	0.016		
10918	450	20.8	20.1	0.018		
	1440	20.7	20.4	0.02	and the second s	
riaxial Comp	ression	Testina				
riaxial Comp STM D 4767 Sample Cell Pr	e Depth	: 31	ft. psi		Specimen Height After 579 Consolidation, (Hc), in .:	
STM D 4767 Sample Cell Pr Back Pr	e Depth ressure ressure	90 : 70	psi psi		Gonsolidation, (Hc), In.: Correction for Vert Displacement, 0 ln.:	
STM D 4767 Sample Cell Pr Back Pr	e Depth ressure ressure	90 : 70	psi		Gonsolidation, (Hc), In .: Correction for Vert Displacement, 0	
STM D 4767 Sample Cell Pr Back Pr	e Depth ressure ressure ressure	90 : 70	psi psi		Gonsolidation, (Hc), In.: Correction for Vert Displacement, 0 ln.:	
STM D 4767 Sample Cell Pr Back Pr Confining Pr	e Depth ressure ressure ressure	31 : 90 : 70 : 20	psi psi psi		Consolidation, (Hc), in .: Correction for Vert Displacement, In .: Load due to Friction and Uplift: 20 lbs.	
STM D 4767 Sample Cell Pr Back Pr Confining Pr	e Depth ressure ressure essure Rate;	90 : 90 : 70 : 20 0 006 o1-o2	psi psi psi psi In/min. B= Dev	ation St	Consolidation, (Hc), in : Correction for Vert Displacement, In : Load due to Friction and Uplift: 20 lbs. Correction for Filter Paper: 0	Sketch
STM D 4767 Sample Cell Pr Back Pr Confining Pr Strain	e Depth ressure ressure essure Rate:	31 90 70 20 0006 Gl-o3	psi psi psi In/min. 3= Dev re Consolid	atlon St Principa	Consolidation, (Hc), in : Correction for Vert Displacement, In :: Load due to Friction and Uplift: 20 lbs. Correction for Filter Paper: 0 Thickness of Membrane (tm), in :: 0.012 tress at Failure, ksf: 8.24 Failure	Sketch

Axial Strain at Failure: 15.01%

Page 2 of 4
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Point: C

									•) Onte.					·
	Vertical Displacement Reading In . :	Pore Pressure psi:	Arial Strain (E1):	(P) - Force Adj for U and F lbs:	Vertical Displac	Correction for Membrane ksft	Area In 2	(σ1-σ3) Deviator Stress ksf:	[Δυ] Induced Pore Water Pressure &sf:	Consolidation	Total Major Principal Stress ksf	### ##################################	al ' Effective Major Principal Stress ksf	p'	q
20 0	0.000	73.5	0 00%	00	0.000	0 00000	6314	0 00	0.5040	2 88	2.88	2 38	2.38	2 38	0 00
67.4	0 003	747	0.05%	47.4	0 003	0.00025	6.317	1 08	0 6768	2.88	3 96	2 20	3 28	2 74	0.54
81.2	0.006	77.0	0 10%	612	0.006	0 00049	6 321	. 1 39	1.0080	2 88	4.27	1.87	3 27	2.57	0.70
912	0 009	80 6	0.16%	712	0 009	0.00076	6 324	1 62	1.5264	2 88	450	1.35	2.97	2 16	0 81
96.0	0 011	80.3	0 20%	76.0	0.011	0 00096	6 327	1.73	1.4832	2.88	4 61	1 40	3.13	2 26	0.86
101.8	0.014	80.6	0 25%	818	0 014	0.00120	6.330	1.86	1.5264	2 88	4 74	1.35	3 21	2 28	0.93
107.7	0.018	817	0 31%	87.7	0.018	0 00150	6 334	1.99	1.6848	2.88	4 87	1 20	3 19	2.19	1 00
110.5	0 020	82.1	0 35%	90 5	0.020	0.00170	6.336	2 06	1.7424	2.88	4 94	1 1,4	3.19	2 17	1.03
114.8	0.023	83.1	0.40%	94.8	0.023	0 00194	6 339	2 15	1 8864	2.88	5.03	0.99	3 15	2.07	1.08
119.0	0 027	83 1	0 46%	990	0.027	0 00224	6.343	2 25	1.8864	2.88	5.13	0 99	3 24	2 12	1 12
122 2	0.029	83 2	0 50%	102 2	0 029	0 00244	6 346	2.32	1 9008	2 88	5 20	0 98	3 30	2 14	1 16
1247	0.032	84 1	0 56%	1047	0.032	0 00271	6.350	2.37	2 0304	2 88	5.25	0.85	3 22	2.04	1.19
127.8	0 035	85.0	0 61%	107 8	0 035	0 00297	6 353	2 44	2.1600 .	2 88	5 32	0.72	3.16	1.94	1 22
129.6	0.038	85.1	0.65%	1096	0.038	0.00317	6.356	2.48	2 1744	2 88	5 36	0 71	3 19	1 95	1.24
132 2	0.041	85 0	0 70%	112.2	0 041	0 00342	6 359	2 54	2 1600	2.88	5.42	0 72	3 26	1.99	1 27
1344	0 043	85.0	0.75%	1144	0 043	000366	6.362	2.59	2 1600	2 88	5 47	0 72	3 31	2.01	1 29
137 1	0.046	850	0 80%	117.1	0 046	0 00391	6 365	2 65	2.1600	2,88	5 53	0 72	3 37	2.04	1.32
139.0	0 049	85 1	0 85%	1190	0 049	0 00413	6.368	2.69	2.1744	2.88	5.57	0.71	3 39	2.05	1 34
142.1	0 053	86.1	0.91%	122 1	0 053	0.00445	6 372	2.75	2 3184	2 88	5 63	0 56	3.32	1 94	1.38
43 8	0 055	860	0 96%	123 8	0 055	0 00467	6.375	2 79	2.3040	2.88	5.67	0 58	3 37	1 97	1 40
45.6	0 058	86.1	1-00%	125.6	0.058	0.00487	6 378	2 83	2.3184	2 88	5.71	0 56	3.39		1.42
64.2	0.087	866	1 50%	1442	0 087	0 00730	6 410	3 23	2.3904	2.88	611	0 49	3.72	2 11	1 62
81.7	0116	869	2 00%	1617	0.116	0.00976	6.443	3.60	2.4336	2 88	6.48	0.45	4 05	1	1.80
97.6	0.145	869	2.50%	177.6	0 145	0 01218	6.476	3 94	2.4336	2.88	6 82	0.45	4 38	2.41	1.97
12 0	0 174	86 4	3 00%	192 0	0.174	0.01464	6 510	4 23	2 3616	2 88	7.11	0 52	4.75		2 12
24.9	0 203	86.4	3.50%	204.9	0 203	0 01707	6.543	4.49	2.3616	2 88	7.37	0.52			2.25
38 2	0 231	86 0	4 00%	218.2	0 231	0 01950	6 577	4.76	2 3040	2.88	7.64	0.58			2.38
51.3	0 260	85.6	4.50%	231 3	0.260	0.02194	6.612	5 02	2.2464	2 88	7.90	0 63		3 14	
63.4	0 290	85 0	5 01%	243.4	0 290	0 02442	6 647	5.25	2 1600	2.88	8 13	0.72		3 34	
75.0	0318	84.7	5.50%	255 0			6.682	5 47	2 1168	2 88	8.35	0 76		3.50	
86.3	0.347	84.0	6.00%	266.3	0 347	0.02927	6.717	5.68	2.0160	2.88	8 56	0.86		3.70	
97-9	0 376	83 6	6 50%	277 9	0.376	0.03169	6.753	5 89	1 9584	2.88	8 77	0 92		3.87	
09.3	0.406	83.0	7.01%	289.3	0.406	03417	6.790	6.10	1.8720	2.88	8.98	1.01		4.06	
195	0.434	82 4	7 51%	299 5	0.434	03660	6 827	6 28	1 7856	2 88	9 16	1.09		4 23 3	
29.7	0.463	81.7	8.01%	309.7	0.463	03904	6.864	6.46	1.6848	2 88	9.34	1 20		4.42	
10 0	0.492	81.4	8 51%	320.0	0 492	04147	6 901	6 64	1 6416	2.88	9 52	1.24		4.56 3	
50.1	0.521	B1 0 !	9.00%	330.1	0.521 0	.04389	6.939	6.81	1.5840	2.88	9 69	1.30		1.70 3	
93	0.550	306	9.50%	339.3 (0 550 0	04632	6 977	6 96	1 5264	2.88	9.84	1.35	8.31	4.83 3	3.48

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10918

Dalak	_
Point:	С

										FOIL.	C				
368.6	0 579	80 0	10 01%	348.6	0 579	0.04878	7.016	711	1 4400	2 88	9 99	1 44	8 55	4.99	3 55
386.9	0.637	79.0	11 00%	366.9	0.637	0.05365	7.095	7 39	1 2960	2 88	10.27	1.58	8 98	5 28	3 70
403.5	0 695	777	12 00%	383.5	0 695	0 05852	7.175	7.64	1.1088	2 88	10.52	1.77	9 41	5 59	3.82
419.6	0.753	769	13 01%	399 6	0 753	0.06342	7 258	7.86	0.9936	2.88	10 74	1 89	9.75	5.82	3.93
434.5	0.810	75 6	14 00%	4145	0 810	0.06828	7.342	8.06	0 8064	2 88	10 94	2 07	10 13		4.03
448.9	0.869	74 2	15.01%	428 9	0.869	0 07318	7.429	8.24	0 6048	2 88	1112	2 28	10.52		4 12
461 8	0.926	73.1	16.01%	441.8	0 926	0.07805	7 518	8.38	0 4464	2 88	11 26	2.43	10 82		4 19
474 4	0 984	72 2	17 01%	454.4	0.984	0 08293	7 608	8.52	0 3168	2 88	11 40	2.56	11.08	-	4 26
486 1	1 042	71.1	18.01%	466.1	1.042	0 08779	7 701	8 63	0 1584	2 88	11.51	2.72	11.35	7 04	
197 3	1 100	70.5	19.01%	477 3	1.100	0 09269	7 796	8.72	0 0720	2.88	11.60	2.81	11 53	7 17	
508.3	1 158	69 3	20.01%	488.3	1.158	0 09756	7 894	8 81	-0 1008	2 88	11.69	2.98	1179	7 39	

JOB NO.				DATE:Jul 31, 09
PROJECT SPORN PLANT	- FLY ASH POND	DIKES		
LOCATION: FLY ASH POND				
				•
SOURCE OF MATERIAL		0903	DEPTH	46.0 ft
DESCRIPTION OF MATERIA	AL			
ASTM DESCRIPTION				
MAX DRY DENSITY, pcf		OPTIMUM MOISTU	JRE, %	
SPECIFIC GRAVITY	2.70			
SAMPLE HGT., mm	146 740	SAMPLE DIA., mm		71.480
CHAMBER PRESSURE, psi	70.0	BACK PRESSURE	, psi	60.0
B-PARAMETER	1.00	EFFECTIVE PRES	SURE, ps	i 10 0
INITIAL HEAD, mm	2369.2		• •	
	BEFORE		<u>AFTER</u>	
WATER CONTENT, %	35.4		34.3	
WET DENSITY, pcf	117.0		01.0	
DRY DENSITY, pcf	86.5			
SATURATION, %	100.51			
VOID RATIO	0.9497			
	,			

1.08E-07

PERMEABILITY COEFFICIENT K, cm/sec

FLEXIBLE-MEMBRANE PERMEABILITY TEST
American Electric Power Service Corp.
Groveport, Ohio

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Material Description: Boring PZ-0903, Shelby Tube - 46' - 48'; Lab # S-10922

Page 1 of 1
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Page 1 of 3

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPOR1, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Page 2 of 3

Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Trlaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Page 3 of 3

Report Date: Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION 4001 BIXBY ROAD GROVEPORT, OHIO 43125

(614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: A

Material Description: Boring PZ-0903, Shelby Tube - 46' - 48'; Lab # S-10922
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. TV TV Mass of Container and Wet Specimen (Mcws), grams 1333.67 1324.63
Mass of Container and Over Dry Specimen (Mcs), grams 1077.83 1077.83
Mass of Container (Mc), grams 209.64 209.64
Mass of Water (Mw), grams: 255.84 246.8
Mass of Solid Particles (Ms), grams: 868.19 868.19
Moisture Content (w), % 29.47% 28 43%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2 829 2.84 2.817 2.829
Height Measurements, Inches: 5.66 5.637 5.655 5.651
Initial Volume of Specimen (Vo), In.3: 35.51
Dry Mass of Specimen After Testing, (Md), grams: 868.19
Dry Unit Weight, (y d) pcf: 93 14 Specific Gravity of the Solids, (G): 2 70
Volume of Solids, (Vs), Cu. In.: 19.6224
Height of Solids,(Hs),In.: 3 1225
Void Ratio Before Consolidation (Eo): 0.8097
Intitail Degree of Saturation: (So) 98.27%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In 0
Cell Pressure AfterSaturation, psi: 63.00
Back Presssure After Saturation After, psi: 60.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.021
Change in Height during Satureation, (Delta Hs) In 0.021
Change in Volume of Specimen during Saturation (Delta Vsat), in3: 0.396

Page 1 of 4

Report Date: Friday. August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD
GROVEPORT, OHIO 43125
(614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: A

Sample No:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),	-
10922	0	24.1	24	0.021	ln.:	5 6 1
10922	0.25	23.9	23.8		Volume Observe Burlands Hala	
10922	0.5	23.9	23.7		Volume Change During Consolidation (Delta Vc), in.3:	0.32
10922	_ 1	23.8	23.7		,	,
10922	2	23.8	23.6		Cross-Sectional Area of Specimen After	6.20
10922	4	23.6	23.4		Consolidation (Ac), In.2:	0.20
10922	8	23.4	23.2			
10922	15	23.2	22.9	0.027		
10922	30	23	22.5	0.028		
10922	60	22.6	22.1	0.03		
10922	120	22.3	21.6	0.032		
10922	240	22.1	21.3	0.034		
10922	360	22	21.2	0.036		
10922	1440	21.8	21	0.037		

Triaxial Compression Testing ASTM D 4767
Sample Depth: 0 ft. Specimen Height After Consolidation, (Hc), In.:
Cell Pressure: 65 psi Correction for Vert Displacement, 0
Back Pressure: 60 psi In.:
Confining Pressure: 5 psl Load due to Friction and Uplift: 17.4 lbs.
Strain Rate: 0.006 in./min. Correction for Filter Paper: 0
Thickness of Membrane (tm), In.: 0.012
σ1-σ3= Deviator Stress at Failure, ksf: 2.03 Failure Sketch
σ3 f= Effective Consolidation Stress at Fallure, ksf: 0 72
σ1= Total Major Principal Stress at Failure: 2.75
σ '3f= σ3-Δ υ= Effective Minor Principal Stress at Failure,ksf: 0.42
σ'1f= Effective Major Principal Stress at Failure, ksf: 2.45
Axial Strain at Fallure: 14.99%

Page 2 of 4
Report Date: Friday August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: A

<u> </u>	1					- 					Point:	_A				
	a: Vertica lied Displacem rce Reading In.:	ent Pres	ore sure psi:	Axial Strain (E1):	(P) - Force Adj for U and F lbs		of for	Area In	(a1-a3) Deviator Stress kst		Consolidation		Minor Principal	Major Principa	re I), d
17	4 0 000	62	28 (00%	0.0	0.000	-0.000	02 6.197	0.00	0.4032	0.72	0.72	0 32	0 32	0	32 0 00
31	6 0 003	63	37 0	0.05%	142	0.003	0.0002	5 6.201	0 33	0.5328	0.72	1.05	0.19	0.52	0	35 0.16
34	7 0 005	64	0 0	10%	173	0 005	0 0004	7 6.203	0.40	0.5760	0 72	1.12	0.14	0.55	0 :	4 0 20
36	6 0 009	64	1 0	16%	192	0 009	0 0007	7 6 207	0.44	0 5904	0 72	116	0.13	0 57	0:	5 0 22
38	1 0011	64	.3 0	20%	20 7	0 011	0 0009	8 6210	0.48	0 6192	0 72	1 20	010	0.58	0.3	4 0 24
39	3 0014	64	.3 0	25%	21.9	0.014	0 0012	4 6213	0.51	0 6192	0 72	1 23	0.10	0.61	0.3	5 0.25
40	6 0017	64	.5 0	31%	23 2	0 017	0 0015.	3 6217	0.54	0.6480	0 72	1 26	0.07	0.61	0.3	4 0 27
41	3 0.019	64	.5 0	35%	23 9	0.019	0.0017	6 219	0 55	0.6480	0.72	1 27	0.07	0 62	0.3	5 0 28
42 4	1 0 022	64	5 0.	.40%	250	0 022	0.0019	6 222	0.58	0.6480	0 72	1.30	0 07	0 65	0.3	6 0 29
43 :	0 026	64	5 0	46%	26 i	0.026	0.00224	6.226	0 60	0.6480	0 72	1.32	0.07	0.67	0.3	7 0.30
44 2	0.028	64.	7 0	50%	268	0.028	0 00244	6 228	0 62	0.6768	0 72	1 34	0.04	0 66	0.3	5 0.31
45 3	1600	64.	7 0:	56%	27.9	0.031	0.00275	6.232	0 64	0 6768	0.72	1 36	0.04	0 69	03	0.32
462		64	7 00	61%	28.8	0.034	0 00302	6.236	0.66	0 6768	0 72	1.38	0 04	071	03	0 33
46 8	ļ	641	7 06	55%	29.4	0 036	0.00319	6 238	0.68	0 6768	0.72	1.40	0 04	0.72	0.3	0 34
47 5		64 7	7 06	59%	30 I	0.039	0 00342	6 241	0 69	0 6768	0 72	1.41	0 04	0.73	0.3	0.35
48 2	0 042	64 9	07	14%	30.8	0 042	0 00366	6 244	Ò 71	0.7056	0 72	1 43	0 01	0 72	037	0.35
490	0 045	64.9	08	10%	31.6	0 045	0 00393	6 247	0 72	0.7056	0 72	1 44	0 01	0 74	0 38	0.36
197	0 048	64 9	08	5%	32.3	0 048	0 00419	6 251	0 74	0.7056	0 72	1 46	0.01	0.75	0 38	0 37
50 5	0 051	64.9		1%	33.1	0.051	0 00447	6 254	0.76	0.7056	0 72	1.48	0.01	0.77	0 39	0 38
9.00	0 054	64.9	0.9	5%	33.5	0.054	0 00470	6 257	0.77	0.7056	0 72	1.49	0.01	0.78	0.40	0.38
1.6	0.056	64.9	1.0	0%	34.2	0 056	0.00491	6 260	0.78	0 7056	0.72	1.50	0.01	0 80	0 41	0 39
7.4	0.084	64.9	1.50	0%	40.0	0 084	0 00738	6 292	0.91	0 7056	0.72	1.63	0 01	0 92	0.47	0.45
2.1	0.112	64.9	2.00		44.7	0.112	0.00982	6 324	1.01	0 7056	0.72	1 73	0 01	1.02	0 52	0.50
7.2	0:140	64.9	2 49			0.140	0.01227	6.356	1.12	0 7056	0.72	1.84	0.01	1.13	0 57	0.56
2.0	0.168	64.8	3 00			0.168	0.01475	6 389	1 22	0 6912	0 72	1 94	0.03	1 24	0.64	0 61
62	0.196	64.6	3.50		58 8 (0.196	0 01722	6 422	1 30	0.6624	0 72	2.02	0.06	1.36	0.71	0.65
0 1	0 224	64 5	4 00				0 01967	6 456	į 38	0.6480	0.72	2.10	0.07	1.45	076	0 69
37	0.253	64.3	4 50				0.02214	6.490	1 45	0.6192	0 72	2.17	0 10	1 55	0 83	0 72
70	0.280	64.2	4 99			280 (02458	6.523	1 51	0.6048	0 72	2 23	0 12	1 63	0 87	0.76
8.0	0.308	64 0	5 49	- 1	- 1		0.02704	6.558	1 56	0.5760	0 72	2.28	0 14	171	0.93	0.78
1.1	0.336	63 9	5.99			I-		6.593	1 60	0.5616	0.72	2.32	0 16	1 76	096	0.80
.4	0,365	63 8	6.499					6.628	1.64	0.5472	0.72	2.36	0.17	1 81	0.99	0.82
.9	0.393	63 7	7.009					6.664	1.68	0.5328	0.72	2.40	0.19	187	1.03	0.84
.1	0.421	63 6	7 499					6.699	1.72	0 5184	0.72	2.44	0.20	1.92	1 06	0.86
1.3	0.449	63 5	7 999					6 736	1.75	0 5040	0.72	2.47	0.22	1.97	09	0.88
3.5		63 4	8.499					6.773	1.79	0 4896	0.72	2.51	023	2.02	.12	.89
9	0.505	63.3	8 99%			ļ		6 810	1.83	0 4752	0.72	2 55	0.24	2.07	.16	91
.8	0 533	63 2	9 49%	6 90	0	533 0	04671	6 847	1.85	0.4608	0 72	2 57	0 26	211 1	.19 (.93

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD
GROVEPORT, OHIO 43125

(614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: A

										FOIII.	А				
109 6	0.561	63 1	9 99%	92 2	0 561	0 04918	6.886	1.88	0.4464	0 72	2 60	0 27	2.15	1.21	0 94
1133	0.617	62 9	10.99%	959	0 617	0 05411	6 963	1 93	0 4176	0.72	2.65	0.30	2 23	1 27	0.96
116.1	0.673	62 7	11 99%	98 7	0.673	0 05900	7 042	1 96	0 3888	0.72	2.68	0.33	2 29	131	0 98
119.2	0.729	62 5	12 99%	101 8	0.729	0.06394	7 123	1 99	0 3600	0 72	271	0.36	2.35	1 36	1.00
121.6	0 785	62 3	13 99%	1042	0 785	0.06885	7.206	201	0.3312	0 72	2.73	0 39	2 40	1.40	1.01
123 9	0 841	62 1	14 99%	106 5	0 841	0.07376	7 290	2.03	0 3024	072	2.75	0.42	2 45	1.43	1 01
126.0	0.897	618	15 99%	108 6	0 897	0.07867	7 377	2.04	0 2592	0.72	2 76	0 46	2.50	1 48	1 02
127 2	0.954	617	16 99%	109.8	0.954	0 08361	7 466	2 03	0 2448	0.72	2 75	0 48	2.51	1 49	1.02
129 3	1.010	61.5	17 98%	111.9	1.010	0 08851	7 557	2 04	0 2160	0 72	2.76	0.50	2 55	1.53	1.02
130 0	1.066	613	18 99%	112 6	1.066	0 09343	7.650	2.03	0.1872	0 72	2.75	0.53	2 56	1.55	I 01
131 6	1.122	61.1	19 98%	1142	1.122	0 09834	7.745	2.02	0 1584	0 72	2.74	0 56	2 59	1.57	101

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: B

TOHIC. D
Material Description: Boring PZ-0903. Shelby Tube - 46' - 48'; Lab # S-10922
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. Q
Mass of Container and Wet Specimen (Mcws), grams 1309 98 1301 68
Mass of Container and Over Dry Specimen (Mcs), grams 1021 69 1021.69
Mass of Container (Mc), grams 206.24 206 24
Mass of Water (Mw), grams: 288.29 279.99
Mass of Solid Particles (Ms), grams: 815.45 815.45
Moisture Content (w), % 35.35% 34.34%
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2.826 2.812 2.805 2.814
Height Measurements, Inches: 5.775 5.779 5.777
Initial Volume of Specimen (Vo), in.3: 35.94
Dry Mass of Specimen After Testing, (Md), grams: 815.45 Dry Unit Weight, (γ d) pcf: 86 45
Specific Gravity of the Solids, (G): 2.70
Volume of Solids, (Vs), Gu. In.: 18.4304
Height of Solids,(Hs),In.: 2.9627
Void Ratio Before Consolidation (Eo): 0 9498
Intitall Degree of Saturation: (So) 100.50%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In. 0
Cell Pressure AfterSaturation, psi: 65.00
Back Presssure After Saturation After, psi: 60.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.03
Change in Height during Satureation, (Delta Hs) In 0.03
Change In Volume of Specimen during Saturation (Delta Vsat), In.3: 0 560

Page 1 of 3

Report Date: Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: B

Sample Nó:	T:	Burette 2:	Burette3:	Rc:	Specimen Height After Consolidation, (Hc),	yermen	
10922	0	23.9	23.7	0.03	ln.:	1	5.73
10922	0.25	23.8	23.5				
10922	0.5	23.7	23.5		Volume Change During Consolidation (Delta Vc), In 3:	1	0 29
10922	1	23.7	23.5		(Dena VC), m 5.	g	
10922	2	23.7	23.4		Cross-Sectional Area of Specimen After		
10922	4	23.6	23.3		Consolidation (Ac), In.2:	1	6.13
10922	8	23.5	23.2				
10922	15	23.4	23.1	0.036			
10922	30	23.1	22.9	0.036			
10922	60	22.8	22.5	0.039			
10922	120	22.5	22.2	0.042			
10922	240	22.1	21.8	0.042			
10922	360	21.9	21.6	0.046			
10922	1440	21.6	21.3	0.048			

Triaxial Compressio ASTM D 4767	ii rosung		•	
Sample Dept	h: 46 ft.	•	Specimen Height After Consolidation, (Hc), in.:	5.73:
Cell Pressur	e: 70 psi	Correctio	n for Vert Displacement,	0
Back Pressur	e: 60 psi		ln.;	·
Confining Pressure	e: 10 psi	Load d	ue to Friction and Uplift:	17.9 lbs.
Strain Rate:	0.006 In/m	ln. Co	rrection for Filter Paper:	0.
		Thicknes	s of Membrane (tm), In.:	0.012
	σ1–σ3≃	Deviator Stress at Failure, I	1	Fallure Sketch
σ3 f≃	Effective Co	nsolidation Stress at Fallure, F	rsf: 1.44	
	σ1= Total	Major Principal Stress at Failu	re: 4.13	/
'3f≔ σ3~Δυ=	Effective Min	or Principal Stress at Failure,k	sf: 0.63	
σ '1 f=	Effective Majo	r Principal Stress at Failure, k	sf: 3.33	
		Axial Strain at Failu	re: 13.02%	V I

Page 2 of 3 e: Friday August 14, 2009

CIVIL LABORATORY
AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: B

	·									POIII.	D				
	Vertical Displacement Reading In. :	Pore Pressure psl:	Axial Strain (E1):	(P) - Force Adj for U and F lbs:	Vertical Displac	Correction for Membrane ksf:	(A) Area In 2:	(01-03) Deviator Stress kss:	[Av] Induced Pore Water Pressure ksf;	σ3 Effective Consolidation Siress ksf	of Fotal Major Principal Stress ksf	σ3 Effective Minor Principal Stress ksf	oi' Effective Major Principal Siress ksf	p'	. 4
179	0.000	63.3	0.00%	0.0	0 000	0.00000	6.125	0 00	0 4752	1.44	1 44	0 96	0.96	0.96	0 00
57 6	0.020	66.9	0.35%	39.7	0 020	0.00173	6.147	0.93	0 9936	1 44	2 37	0 45	1.37	0 91	0.46
151.0	0 686	65 7	11 97%	133.1	0 686	0 05928	6.958	2.70	0 8208	1 44	4.14	0.62	3 31	1.97	1.35
152.8	0 744	65 6	12 99%	134.9	0 744	0 06429	7 039	2 70	0.8064	1 44	4.14	0 63	3 33	1 98	1.35
152 8	0 746	65 6	13 02%	134.9	0.746	0 06446	7 042	2 69	0.8064	1.44	4.13	0 63	3.33	1.98	1 35
154.4	0.803	65 4	14 02%	136 5	0.803	0 06942	7 124	2 69	0 7776	1.44	4 13	0 66	3.35	2 01	1 34
155 5	0.861	65 0	15 03%	137 6	0.861	0.07438	7.208	2.67	0 7200	1 44	4.11	0 72	3.39	2.06	1.34
56 8	0.918	64 8	16.03%	138 9	0.918	0.07934	7.294	2.66	0 6912	1 44	4.10	0 75	3 41	2.08	1.33
57 8	0.976	647	17.03%	139 9	0.976	0.08432	7.383	2.64	0.6768	1 44	4.08	0 76	3.41	2.09	1 32
58 6	1.033	64 6	18.03%	140 7	1.033	0.08926	7.472	2.62	0.6624	1.44	4 06	0 78	3.40	2.09	1 31

AMERICAN ELECTRIC POWER SERVICE CORPORATION
4001 BIXBY ROAD
GROVEPORT, OHIO 43125

OVEPOR I, OHIO 43 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: C

Politic C
Material Description: Boring PZ-0903, Shelby Tube - 46' - 48'; Lab # S-10922
Moisture Determination ASTM D2216 Before Testing Testing
Tare No. Y
Mass of Container and Wet Specimen (Mcws), grams 1361 13 1334.81
Mass of Container and Over Dry Specimen (Mcs), grams 1093 60 1093.60
Mass of Container (Mc), grams 210.21 210.21
Mass of Water (Mw), grams: 267.53 241.21
Mass of Solid Particles (Ms), grams: 883 39 883.39 Moisture Content (w), % 30.28% 27.31%
· · · · · · · · · · · · · · · · · · ·
Initial Condition of Speciman ASTM D2435 (1) (2) (3) Average
Diameter Measurents, Inches: 2 807 2 825 2.827 2.820
Height Measurements, Inches: 5.841 5.835 5.839
Initial Volume of Specimen (Vo), In.3: 36.46
Dry Mass of Specimen After Testing, (Md), grams: \$883.39
Dry Unit Weight, (γ d) pcf: 92.30 Specific Gravity of the Solids, (G): 2.70
Volume of Solids, (Vs), Cu. In:: 199659
Height of Solids, (Hs), in.: 3.1974
Void Ratio Before Consolidation (Eo): 0.8261
Intitall Degree of Saturation: (So) 98.98%
Saturation - ASTM D4767 Section 8.2
Dial Indicator Reading Prior to Saturation (Rb:) In. 0
Cell Pressure AfterSaturation, psi: 65.00
Back Presssure After Saturation After, psi: 60.00
Pore Pressure Paramenter B: 1
Dial Indicator Reading After Saturation, (Ra) In.: 0.031
Change in Height during Satureation, (Delfa Hs) In. 0 031
Change in Volume of Specimen during Saturation (Delta Vsat), in 3: 0.581

Page 1 of 4

Report Date: Friday, August 14 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORT, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP, FACILITY

Sample No: 10922

Point: C

ample No:	T:	Burette 2:	Butette3:	Rc:	Specimen Height After Consolidation, (Hc),	
10922	0	23.4	23.8		In:	574
10922	0.25	23.1	23.5			
10922	0.5	23	23.5		Volume Change During Consolidation	1.18
10922	1	22.9	23.4		(Delta Vc), In.3:	3
10922	2	22.8	23.3		Cross-Sectional Area of Specimen After	-
10922	4	22.5	23.1		Consolidation (Ac), In.2:	6.04
10922	8	22.2	22.7			
10922	15	21.8	22.3	0.046		
10922	30	21.1	21.6	0.051		
10922	60	19.9	20.5	0.058		
10922	120	18.2	19.1	0.068		
10922	240	16.2	17.4	0.08		
10922	360	15	16.4	0.086		
10922	1440	13.1	14.7	0.098		

Sample Depth:	46 ft.	Specimen Height After Consolidation, (Hc), In.:	5.74
Cell Pressure;	<u> </u>	Correction for Vert Displacement,	0
Back Pressure:	60 psi	ln.:	•
Confining Pressure:	20 psi	Load due to Friction and Uplift:	22.5 lbs.
Strain Rate:	0.006 In/min.	Correction for Filter Paper:	0
		Thickness of Membrane (tm), In.:	0.012
		r Stress at Fallure, ksf; 3.77	Failure Sketch
σ3 f ≈	Effective Consolidation	Stress at Fallure, ksf: 2.88	
	σ1= Total Major Prin	cipal Stress at Failure: 6.65	
3f= σ3-Δυ=	Effective Minor Principa	l Stress at Fallure,ksf: 0.96	
σ ' 1f=	Effective Major Principal	Stress at Failure, ksf: 4.74	
		Axial Strain at Failure: 15.00%	Y

Page 2 of 4
Report Date: Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: C

	,											i Oliit.	Ų				
	App Fo	a: Verticalist Ver	ment Pro	Pore essure psi:	Axial Strain (E1):	(P) - Force Adj for and F ii	Verti U Displ	ac Membr	Area Ir	(a 1-a3) Deviato Stress ks	Induced Po	Consolidation	ol Total Major Principal Stress ksf	o3 Effective Minor Principal Stress ksf	Gl ' Effective Major Principat Stress ksf		q
	22	.5 0 00	0 (52.7	0 00%	0.0	0.00	0.000	02 6 04	0.00	0.3888	2.88	2.88	2 49	2.49	2.4	9 0 00
	51	.7 0.00	3 6	55 1	0 05%	29.2	.0 00	3 0.000	24 6 040	0.70	0.7344	2.88	3 58	2 [5	2 84	2.4	0 35
	61			67	0 10%	38.7	0 00	6 0 000	49 6 049	0.92	0.9648	2 88	3.80	1.92	2 84	2 38	3 0.46
	69			82	0.16%	47.3	0 00	9 0 000	80 6 053	1 12	1.1808	2 88	4 00	1 70	2.82	2.26	0 56
	73	4 0011	6	8.7	0 20%	50.9	0 01	1 0 000	99 6.056	121	1.2528	2.88	4 09	1 63	2.84	2 23	0 60
•	77.			9.1	0 25%	54.7	0 01	0 0012	23 6.059	1 30	1 3104	2.88	4.18	1 57	2.87	2.22	0 65
	18				0 31%	58.5	0 018	0 0015	6.062	1 39	1 3968	2.88	4.27	1 48	2 87	2 18	0.69
	82	8 0 020	70	9 (0 35%	60 3	0 020	0 0017	6.065	1.43	1 5696	2 88	431	1 31	2 74	2 03	0.72
	85 :	3 0 023	70).9 (0 40%	62.8	0 023	0 0019	6.068	1.49	1.5696	2 88	4 37	1 31	2.80	2 05	0 74
	88 .		71	0 0	46%	66 0	0 026	0 0022	9 6.071	1.56	1.5840	2 88	4.44	1 30	2.86	2.08	0.78
	90 0		71		50%	67 5	0.029		0 6.074	1.60	1 5840	2.88	4.48	1 30	2 89	2.09	0.80
	92 1	~	72		56%	69.6	0 032	0.0028	0 6 078	1 65	1 7712	2.88	4 53	1 11	2 76	1.93	0 82
	93 4	ļ	72		61%	70 9	0.035	0.0030	2 6 080	1 68	1 8288	2 88	4 56	1 05	2.73	1 89	0 84
	94 7		72		.65%	72.2	0.037	0.0032	6 083	171	1 8000	2 88	4 59	80.1	2 79	1 93	0.85
	967	0 040	72	6 0	.70%	74 2	0.040	0.0034	6 086	1 75	1 8144	2 88	4.63	1.07	2 82	194	0.88
	97 2	0 043	72		75%	747	0.043	0.00372		1 76	1 8144	2 88	4.64	1.07	2 83	1.95	0 88
	98 8	0 046	72		80%	76 3	0 046	0.00399	6.092	08 1	1 8432	2.88	4 68	1 04	2.84	1.94	0 90
	99.9	0 049	73		85%	77 4	0.049	0.00422	6 095	1.82	1 9152	2.88	4 70	0 96	2 79	1 88	0.91
	101 1	0 052	73.			786	0.052	0 00451	6.099	I 85	1 9296	2 88	4.73	0 95	2 80	1 88	0.93
	102 3	0.055	73.			798	0.05.5	0 00481	6.102	188	1 9584	2 88	4.76	0.92	2 80	1 86	0.94
	103 2	0.057	73.			80 7	0.057	0.00498		1.90	1 9728	2 88	478	0.91	2 81	1 86	0 95
	1127	0.086	74.5			902	0 086	0.00748	6.136	2.11	2.1456	2 88	4.99	0.73	2.84	1.79	1 05
	120 7	0 115	75 8			98.2	0.115	0 00997	6.167	2.28	2.2752	2.88	5 16	0 60	2.89	1.75	1 14
	127 6	0 143	.76.9			05.1	0.143	0 01245	6.198	2.43	2.4336	2.88	5 31	0 45	2 88	1 66	1 21
-	134.1	0 172	76.7				0.172	0 01493	6.230	2.56	2.4048	2.88	5 44	0 48	3 04	176	1 28
L	140 6	0 201	769				0 201	0 01743	6.263	2 70	2.4336	2.88	5.58	0.45	3.14	1.80	1.35
<u> </u>	146.7	0 229	77 0				0 229	0 01991	6 295	2 82	2.4480	2.88	5.70	0.43	3 25	1.84	41
L	152.0	0 258	772				0 258	0.02241	6.328	2 92	2.4768	2.88	5.80	0.40			.46
- 1	1562	0 287	771	50			0 287	0.02490	6.361	3.00	2.4624	2.88	5.88	0 42	3.42	92 1	50
	161.1	0 316	770	5 5				0.02741	6.395	3.09	2.4480	2 88	5 97	0.43	,	.98 1	
	166.0	0.344	77 0					0.02990	6.429	3.18	2.4480	2 88	6 06	0 43	3 62 2	.02 1	59
<u> </u>	707	0.373	768	6 50				0.03240	6.464	3 27	2.4192	2 88	6.15	0.46	3.73 2	1 01.	.63
J	74.4	0.402	769	7.00			402	0.03486	6.498	3 33	2.4336	2.88	6.21	0.45	3.78 2	11 [67
<u> </u>	78.1	0.430	76.5	7.50				0.03736	6.533	3 39	2 3760	2.88	6.27	050	3.90 2	20 1.	.70
- 1-	81.6	0.459	76 4	8.00	_			0.03984	6.569	3.45	2 3616	2.88	6.33	0.52	3.97 2	24 1	72
<u> </u>	849	0.488	76.2	8.50				0.04236	6.605	3.50	2 3328	2.88	6.38	0.55	4 05 2	30 1.	75
	88 0	0.517	75.8	9.00				0.04484	6.641	3.54	2.2752	2.88	5 42	0 60	415 2	38 1.	77
1	907	0.545	75 6	950	% 16	82 0	545 (0.04733	6.678	3.58	2 2 4 6 4	2.88	5 46	0 63	421 2.	42 1.	79
																	

Page 3 of 4

Report Date:

Friday, August 14, 2009

AMERICAN ELECTRIC POWER SERVICE CORPORATION

4001 BIXBY ROAD GROVEPORI, OHIO 43125 (614) 836-4200

Test Report for Consolidated-Undrained Triaxial Compresion Test - ASTM D 4767

Company: AEP

Project: SPORN ASH DISP. FACILITY

Sample No: 10922

Point: C

C		-,								Ponn.	C				
193.5	0.574	75 3	10 00%	171 0	0 574	0 04983	6.715	3 62	2.2032	2 88	6.50	0 68	4.29	2.49	1.81
197.7	0 632	74.7	11 00%	175 2	0 632	0 05483	6.791	3 66	2.1168	2.88	6 54	0 76	4 42	2 59	1 83
202.2	0 689	74.6	11.99%	179 7	0 689	0.05977	6.867	3.71	2 1024	2.88	6.59	0.78	4 49	2.63	1 85
206.2	0746	74.3	13 00%	183 7	0.746	0.06477	6.946	3 74	2 0592	2.88	6.62	0.82	4.56	2.69	1 87
209.6	0 803	74.0	13 99%	187.1	0 803	0 06974	7 027	3.76	2.0160	2 88	6.64	0 86	4.63	2.75	1.88
212.5	0 861	73 3	15.00%	190 0	0.861	0.07476	7 110	3.77	1.9152	2 88	6.65	0 96	474	2.85	1.89
215.0	0 919	73 0	16 00%	192 5	0.919	0.07974	7 195	3.77	1.8720	2 88	6.65	101	4 78	-	1.89
217.0	0 976	72 5	16 99%	194 5	0.976	0.08469	7 281	3.76	1.8000	2 88	6 64	1 08	4.84	2.96	
218.3	1 033	71 7	18 00%	195 8	1.033	0 08969	7 370	3 74	1.6848	2 88	6 62	1 20	4.93	3 06	1 87
220 1	1.090	71 0	18 99%	197.6	1.090	0.09465	7 461	3 72	1 5840	2.88	6 60	1.30	5.02	3 16	
221 5	1.148	70 7	20.00%	199.0	1.148	0 09965	7 554	3 69	1 5408	2.88	6.57	1 34	5.03	3 19	

Page 4 of 4

Report Date: Friday, August 14 2009

LABORATORY DATA DEVELOPED BY: GEO/ENVIRONMENTAL ASSOCIATES, INC.

DATED: DECEMBER 2009 & JANUARY 2010

SUMMARY OF LABOR TORY TEST RESULTS

Page 1 of 2

Project: Philip Sporn Plant Project Number: 09-387	Soil Description	Ash mix, clay, sandy, dark brown & light brown	Fly Ash, gray	Fly Ash, dark gray, dark brown	Fly Ash, dark gray	Fly Ash, dark gray, dark brown	Fly Ash, dark gray	Fly Ash, dark gray	Fly Ash, gray	Fly Ash, dark gray
	Other Test	S	ν	S	S	S	S,T	ν.	S	S
	USCS	SM	ML	ML	ML	ML	ML	ML	ML	ML
BERG ITS	Plasticity Index (%)		ďи	:	-	ďu	du	i	ďu	ďu
ATTERBERG LIMITS	Liquid Limit (%)		46	1		37	4	ı	4	45
	Dry Density (pcf)	80.6	61.3	61.0		69.3	71.9	1	65.7	66.5
	Natural Moisture (%)	26.8	53.3	58.5	33.0	46.6	44.6	37.2	53.3	51.5
	Depth (ff)	26.5-27.2	28.5-31.0	32.5-35.0	36.5-39.0	40.5-43.0	44.5-47.0	48.5-51.0	52.5-55.0	56.5-59.0
	Sample Type*	ST	ST	ST	ST	ST	ST	ST	ST	ST
	Sample No.	ST-1	ST-2	ST-3	ST-4	ST-5	9:LS	ST-7	8-LS	6-LS
	Boring	GA-1A	GA-1A	GA-1A	GA-1A	GA-1A	GA-1A	GA-1A	GA-1A	GA-1A

Geo/Environmental Associates

DATACHECKED BY

P-PROCTOR TEST K-PERMEABILITY C-CONSOLIDATION T-TRIAXIAL S-SIEVE OR GRAIN SIZE ANALYSIS U-UNCONFINED COMPRESSION

*ST-SHELBY TUBE SAMPLE, SS-SPLIT SPOON SAMPLE, B-BAG SAMPLE, J-JAR SAMPLE

**TEST RESULTS REPORTED ON OTHER SHEETS:

AEPSPP003630

SUMMARY OF LABOR, TORY TEST RESULTS

Page 2 of 2

Boring Sample Sample Depth (%) No. (%) Light (%) Indiget (%) Light (%) Indiget (%)				1							
oring Sample Depth (ft) (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Depth (S) Name (S) Liquid (S) Plasticity (S) USCS A-1A ST-10 ST 660-630 33.7 63.5 44 np ML A-1C ST-2 ST 660-71.5 28.2 95.1 35 16 CL 3A-2 ST-3 ST-3 20.3 20 4 CL/ML 3A-3 ST-3 ST-3 24.4 23 6 CL/ML 3A-4 ST-3 ST-3 24.4 32 6 CL/ML 3A-4 ST-1 ST 280-30.5 73.4 51.7 32 0 CL/ML A-4 ST-1 ST-1 ST-1	Project: Philip Sporn Plant Project Number: 09-387 Date: January 2010	Soil Description	Fly Ash, dark gray, dark brown	Clay, silty, brown	Сlay, silty, brown	Clay, silty, light brown	Clay, silty, light brown	Fly Ash, dark gray	Fly Ash, dark gray	Clay, silty, light brown w/fly ash	Fly Ash, dark gray
oring Sample Sample Depth Natural (%) Dry (Per) Liquid (R) Plasticity (R) A.1A ST-10 ST 605-63.0 53.7 6.3.5 44 mp A-1A ST-10 ST 605-63.0 53.7 6.3.5 44 mp A-1C ST-2 ST 69.0.71.5 28.2 95.1 35 16 3A-2 ST-2 ST 69.0.71.5 20.3 - 20 4 3A-2 ST-3 ST 69.0.71.5 20.8 - 20 4 3A-3 ST-3 ST 79.0.81.5 24.4 - 20 4 3A-3 ST-3 ST 30.0.81.5 24.4 - 20 4 3A-3 ST-3 ST 30.0.81.5 24.4 - 20 4 3A-4 ST-1 ST 30.0.81.5 20.4 - 20 4 3A-4 ST-2 ST		Other Test **	S	S,T	s	S	S	s	S	S	S
oring No. Sample No. Depth (ft) (ft) (%) Natural (%) Dry (%) Liquid (%) A-1A ST-10 ST 60.5-63.0 53.7 63.5 44 A-1A ST-10 ST 60.5-63.0 53.7 63.5 44 A-1C ST-2 ST 69.0-71.5 28.2 95.1 35 3A-2 ST-2 ST 69.0-71.5 20.3 20 3A-3 ST-3 ST 59.0-61.5 20.3 20 3A-3 ST-3 ST 79.0-81.5 20.8 23 3A-4 ST-3 ST 79.0-81.5 24.4 32 3A-4 ST-1 ST 28.0-30.5 73.4 32 3A-4 ST-2 ST 32.0-34.5 57.2 59.2 3A-4 ST-3 ST 36.0-31.5 56.3 32 3A-4 ST-3 ST 30.34.5 50.3		nsce	ME	Ð	CI/ME	CI/ME	ਰ	ML	ML	ರ	ML
oring Sample No. Type* (ft) (ft) (ft) (ft) Depth (ft) (ft) (ft) Natural (ft) (ft) (ft) (ft) Dry (ft) (ft) (ft) (ft) Depth (ft) (ft) (ft) Natural (ft) (ft) (ft) (ft) Depth (ft) (ft) (ft) Depth (ft) (ft) (ft) Depth (ft) (ft) (ft) Depth (ft) (ft) Depth (ft) (ft) Depth (ft) (ft) Depth (ft) (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Depth (ft) Dry (ft) Ling A-1C ST-2 ST 69.0-71.5 28.2 95.1 33 3A-2 ST-3 ST 79.0-81.5 20.8 22 3A-3 ST-3 ST 79.0-81.5 24.4 33 A-4A ST-1 ST 28.0-30.5 73.4 51.7 A-4A ST-2 ST 35.0-34.5 57.2 59.2 A-4A ST-3 ST 29.0-31.5 56.3 61.7	BERG TS	Plasticity Index (%)	ďп	16	4	6	12		-	10	1
oring Sample No. Type* Type* Type* (ft) (ft) (%) (%) Natural (%) A-1A ST-10 ST 60.5-63.0 53.7 A-1C ST-2 ST 69.0-71.5 28.2 3A-2 ST-2 ST 69.0-71.5 20.3 3A-3 ST-3 ST 69.0-71.5 20.8 3A-3 ST-3 ST 79.0-81.5 24.4 3A-4A ST-1 ST 28.0-30.5 73.4 3A-4A ST-2 ST 32.0-34.5 57.2 3A-4A ST-2 ST 36.0-38.0 33.8 3A-4B ST-1 ST 29.0-31.5 56.3	ATTER	Liquid Limit (%)	44	35	20	23	32		-	32	1
oring Sample Sample Depth Type* (ft) A-1A ST-10 ST 60.5-63.0 A-1C ST-2 ST 69.0-71.5 BA-2 ST-3 ST 69.0-71.5 BA-4 ST-1 ST 28.0-30.5 BA-4A ST-2 ST 32.0-34.5 BA-4A ST-3 ST 32.0-34.5 BA-4B ST-1 ST 29.0-31.5		Dry Density (pcf)	63.5	95.1	-			51.7	59.2	+	61.7
oring Sample Sample A-1A ST-10 ST A-1C ST-2 ST SA-2 ST-3 ST SA-3 ST-3 ST SA-4A ST-1 ST SA-4A ST-1 ST SA-4A ST-1 ST SA-4A ST-2 ST SA-4A ST-1 ST SA-4A ST-1 ST SA-4A ST-3 ST SA-4A ST-3 ST SA-4B ST-3 ST	·	Natural Moisture (%)	53.7	28.2	20.3	20.8	24.4	73.4	57.2	33.8	56.3
Sample No. ST-10 ST-2 ST-2 ST-3 ST-3 ST-3 ST-3 ST-3 ST-3		Depth (ft)	60.5-63.0	69.0-71.5	59.0-61.5	69.0-71.5	79.0-81.5	28.0-30.5	32.0-34.5	36.0-38.0	29.0-31.5
oring Sa A-1A A-1C 3A-2 3A-3 A-4A A-4A A-4A		Sample Type*	ST	ST	ST	ST	ST	ST	ST	ST	ST
Boring GA-1A GA-1C GA-2 GA-3 GA-4A GA-4A GA-4A GA-4A		Sample No.	ST-10	ST-2	ST-2	ST-3	ST-3	ST-1	ST-2	ST-3	ST-1
		Boring	GA-1A	GA-1C	GA-2	GA-2	GA-3	GA-4A	GA-4A	GA-4A	GA-4B

Geo/Environmental Associates

DATA CHECKED BY

T-TRIAXIAL
S-SIEVE OR GRAIN SIZE ANALYSIS K-PERMEABILITY
U-UNCONFINED COMPRESSION C-CONSOLIDATION

*ST-SHELBY TUBE SAMPLE, SS-SPLIT SPOON SAMPLE, B-BAG SAMPLE, J-JAR SAMPLE

**TEST RESULTS REPORTED ON OTHER SHEETS:

Void R. io Work Sheet

Project: Philip Sporn Plant

Samples: Boring Ga-1A

Project No. : 09-387

Project : Philip Sporn Plant

Project No. : 09-387

Samples: Borings GA-1C, GA-4A & GA-4B

GA-4A GA-4B ST-1 ST-2 ST-1 28.0-30.5 32.0-34.5 29.0-31.5	1.734 1.572 1.563	89.6 93.0 96.5 51.7 59.2 61.7	1.9951.7221.3821.1511.0950.8840.8440.6270.498	0.0223 0.0185 0.0143 2.25 2.29 2.31	0.0082 0.0077 0.0061 0.0135 0.0100 0.0080 0.0006 0.0008 0.0002	0.6325 0.5856 0.5710 1.7213 1.4133 1.3312
GA-1C GA ST-2 ST 69.0-71.5 28.0	1.282	121.9 89 95.1 51	2.684 1.9 2.094 1.1 0.590 0.8	0.0220 0.03 2.71 2.3	0.0124 0.0 0.0095 0.0 0.0002 0.0	0.4372 0.6 0.7770 1.7
Boring Sample No. Depth	Moist(+1)	Wet Density Dry Density	Wet wt Dry wt Water wt	Volume Spec. Grav.	Vol. Solids Vol. Water Vol. Air	Porosity Void Ratio

DENSITY CALCULATIONS

Project : Philip Sporn Plant

Date: January 07, 2010

Project No. : 09-387

Boring	Sample					N	Moisture Data (w/tare)	ita (w/tare)				Wet	Dry
	No.	Ŧ	Dia	Wt(gm)	Wt(Ibs)	wet wt	dry wt	tare wt	Moist	Area	Volume	Density	Density
GA-1A	ST-1	3.77	2.84	640.9	1.413	878.4	718.8	123.2	26.8	0.0440	0.0138	102.2	80.6
GA-1A	ST-2	5.98	2.86	947.8	2.090	833.5	584.7	117.9	53.3	0.0446	0.0222	94.0	61.3
GA-1A	ST-3	7.19	2.87	1180	2.601	606.9	426.1	117.1	58.5	0.0449	0.0269	9.96	61.0
GA-1A	ST-4	3.46	2.84	650	1.433	1035.2	844.6	266.6	33.0	0.0440	0.0127	113.0	85.0
GA-1A	ST-5	7.78	2.87	1343.8	2.963	748.1	548.7	123.1	46.9	0.0449	0.0291	101.7	69.3
GA-1A	ST-6	5.55	2.83	952.9	2.101	952.9	659.0	0.0	44.6	0.0437	0.0202	104.0	71.9
GA-1A	ST-7	3.78	2.85	672.3	1.482	954.8	768.6	2.792	37.2	0.0443	0.0140	106.2	77.4
GA-1A	ST-8	8.33	2.86	1414.2	3.118	889.8	621.5	118.2	53.3	0.0446	0.0310	100.7	65.7
GA-1A	ST-9	6.02	2.83	1000.6	2.206	895.3	632.6	122.1	51.5	0.0437	0.0219	100.7	66.5
GA-1A	ST-10	8.56	2.86	1409.3	3.107	663.1	474.3	122.4	53.7	0.0446	0.0318	97.6	63.5
GA-1C	ST-2	5.88	2.87	1217.6	2.684	1217.6	950.1	0.0	28.2	0.0449	0.0220	121.9	95.1
GA-4A	ST-1	5.99	2.86	904.9	1.995	811.4	579.5	263.7	73.4	0.0446	0.0223	89.6	51.7
GA-4A	ST-2	4.98	2.86	780.9	1.722	762.3	579.4	259.5	57.2	0.0446	0.0185	93.0	59.2
GA-4B	ST-1	3.88	2.85	626.7	1.382	587.8	418.2	117.0	56.3	0.0443	0.0442	1 90	64.7

ST-7 ST-8 ST-9 GG 3.5-51.0 52.5-55.0 56.5-59.0 66 2657 2683 2671 66 7930 7975 7820 7820 7930 7975 7820 7820 5273 5292 5149 78 11.62 11.67 11.35 11.35 10.109 0.115 0.107 106.2 107.0 101.5 106.2 69.2 84.61 90.97 91.42 63.8 52.5 69.2 44.73 47.85 38.43 673.06 680.52 6 80.48 673.06 680.52 6 7 80.48 673.06 680.52 3 6 80.76.6 3255.3 3025.5 3 8076.6 3255.3 3043.1 4 437.1 1443.6 1289.9 1 437.1 41.25 1.35 1.35	GA-1A			E	v Ash Pond	Fly Ash Pond East Dike - Section K-K	- Section K	¥			
Sample Depth (ft) 28.5-31.0 26.5-36.0 36.5-39.0 40.5-43.0 44.5-51.0 52.5-55.0 56.5-55.0	-,	Sample	ST-2	6	ST-4	ST-5	ST-6	1	ST-8	ST-9	ST-10
Tube Weight (g) 2672 2658 2676 2673 2675 2657 2683 2671 Tube & Sample Weight (g) 7826 8022 8234 8080 8065 7930 7975 7820 Sample Weight (g) 5154 5364 5558 5407 5390 5773 5292 5490 Sample Weight (g) 11.36 11.83 12.25 11.92 11.88 11.62 11.67 11.35 Recovery Length (ft) 2.66 2.5 2.6 2.55 2.55 2.41 2.55 2.37 Sample Weight (g) 10.20 0.113 0.117 0.115 0.115 0.107 10.15 0.107 Dry Sample Weight (g) 103.54 7.83 100.6 84.72 85.84 84.61 90.97 91.42 Moisture Content 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content 75.49 53.78 66.03 58.14 52.71		Sample Depth (ft)	28.5-31.0	32.5-35.0	36.5-39.0	40.5-43.0	44.5-47.0	48.5-51.0	52.5-55.0	56.5-59.0	60.5-63.0
Tube & Sample RS 5 mple 8022 8234 8080 8065 7930 7975 7820 Sample Weight (g) 5154 5364 5558 5407 5390 5273 5292 5149 Sample Weight (g) 11.36 11.83 12.25 11.92 11.88 11.62 11.67 11.35 Recovery Length (ft) 2.66 2.5 2.6 2.55 2.41 2.55 2.37 Sample Volume (ft) 0.120 0.113 0.117 0.115 0.115 0.109 0.115 0.109 Woist Sample Weight (g) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 11.42 Woisture Content (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.08 Moisture Content (g) 743.6 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask Water (g) 743.6 47.6 48.95 56.49 40.09 44.		Tube Weight (g)	2672	2658	2676	2673	2675	2657	2683	2671	2508
Weight (ibs) /826 8022 8234 8060 8065 7930 7975 7820 Sample Weight (ibs) 11.36 11.84 12.25 11.92 11.88 11.62 11.67 11.35 Recovery Length (ibs) 11.36 12.35 2.55 2.55 2.41 2.55 2.37 Sample Volume (if) 2.66 2.5 2.6 2.55 2.55 2.41 2.55 2.37 Density (lbs/ft²) 94.8 104.9 104.5 103.7 103.4 107.0 0.115 0.107 Noist Sample Weight (g) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 11.42 Weight (g) 73.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask Water (g) 673.32 680.56 673.23 680.48 673.06 59.67		Tube & Sample		,							2007
Sample Weight (lbs) 5154 558 5407 5390 5273 5292 5149 Sample Weight (lbs) 11.36 11.83 12.25 11.92 11.88 11.62 11.67 11.35 Recovery Length (lbs) 11.36 2.56 2.55 2.55 2.41 2.55 2.37 Sample Volume (ft²) 0.120 0.113 0.117 0.115 0.115 0.109 0.115 0.105 Dry Sample Volume (ft²) 10.34 104.5 104.5 104.5 103.7 103.4 107.0 101.5 11.35 Moisture Content 10.35 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 52.5 69.0 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 80.2 Flask & Water (g) 673.32 680.56 673.23 680.52		Weight (g)	7826	8022	8234	8080	8065	7930	7975	7820	8186
Recovery Length (lbs) 11.36 11.83 11.62 11.67 11.35 Recovery Length (lbs) 11.36 2.5 2.5 2.55 2.55 2.41 2.55 2.37 Sample Volume (rt²) 0.120 0.113 0.117 0.115 0.115 0.109 0.115 0.107 Density (lbs/ft²) 34.8 104.9 104.5 103.7 103.4 107.0 101.5 0.107 Moist Sample Weight (lbs/ft²) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Moisture Content (lb) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Ample Weight (lb) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 68.50 Flask Water (lg) 673.32 680.56 673.32 680.48 673.06 680.52 54.03 Sample (s) 719.23 702.72 710.64 695.29 702.12 702.4 702.12	λ	Sample Weight (g)	5154	5364	5558	5407	5390	5273	5292	5149	5678
Recovery Length (ft) 2.66 2.5 2.6 2.55 2.41 2.55 2.37 Sample Volume (ft²) 0.120 0.113 0.117 0.115 0.115 0.109 0.115 0.107 Density (lbs/ft²) 94.8 104.5 103.7 103.4 107.0 101.5 106.2 Moist Sample Weight (g) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Moisture Content (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 55.67 54.03 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 55.07 54.03 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Hask, Water (g) 673.32 680.56 673.32 680.56 673.6 57.0	TISNE	Sample Weight (lbs)	11.36	11.83	12.25	11.92	11.88	11.62	11.67	11.35	12.52
Sample Volume (ft²) 0.120 0.113 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.115 0.109 0.115 0.107 Moisty (lbs/ft²) 94.8 104.9 104.5 103.7 103.7 103.4 107.0 101.5 106.2 Weight (g) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Dry Sample Weight (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 52.5 69.2 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask & Water (g) 673.32 680.56 673.32 680.56 673.23 680.56 673.23 680.56 705.24 701.01 705.66 706.66 706.66 706.66 706.66 706.66	1 0	Recovery Length (ft)	2.66	2.5	2.6	2.55	2.55	2.41	2.55	2.37	2.49
Density (lbs/ft²) 94.8 104.9 104.5 103.7 103.4 107.0 101.5 106.2 Weight (g) 103.54 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Dry Sample Weight (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 52.55 69.2 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask Water (g) 673.23 680.56 673.32 680.48 673.06 680.56 Flask Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 240 2.36 Specific Gravity of Cm³) 3395.7 3191.4 3319.1 3255.3 3255.3 3076.6 3255.3 3025.5 Weight of Solids (g) 3757.7 3613.6 3757.7 1493.3 1457.0<		Sample Volume (ft³)	0.120	0.113	0.117	0.115	0.115	0.109	0.115	0.107	0.112
Moist Sample Moist Sample Weight (g) 75.49 79.83 100.6 84.72 85.84 84.61 90.97 91.42 Dry Sample Weight (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content (g) 37.2 48.4 52.4 45.7 62.9 63.8 52.5 69.2 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask Water (g) 673.32 680.56 673.32 680.56 673.23 680.48 673.05 680.55 Flask Water (g) 673.32 680.56 673.32 680.56 673.23 680.48 673.05 680.55 Flask Water (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Cm³) 3395.7 319.1 3395.3 325.3 3076.6 3255.3 3076.6 Weight of Solids 3757.7 3613.6		Density (lbs/ft³)	94.8	104.9	104.5	103.7	103.4	107.0	101.5	106.2	111.5
Dry Sample Weight (g) 75.49 53.78 66.03 58.14 52.71 51.65 59.67 54.03 Moisture Content (%) 37.2 48.4 52.4 45.7 62.9 63.8 52.5 59.67 54.03 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask Water (g) 673.32 680.56 673.32 680.56 673.23 680.56 673.23 680.52 680.50 Flask Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Cavity of (cm³) 3395.7 3191.4 3319.1 3255.3 3076.6 3255.3 3075.5 Weight of Solids (g) 3757.7 3613.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (gm³) 1437.7 1493.3 1437.0 1734.8 1488.5 1437.1 1443.6 1289.9	ВЕ	Moist Sample Weight (g)	103.54	79.83	100.6	84.72	85.84	84.61	90.97	91 42	90 F
Moisture Content 37.2 48.4 52.4 45.7 62.9 63.8 52.5 69.2 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 69.2 Flask & Water (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask & Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Solids 2.61 2.42 2.50 2.14 2.22 2.24 2.40 2.36 Volume of Sample (g) 3757.7 3613.6 3648.1 3710.6 3255.3 3076.6 3255.3 3025.5 Weight of Solids (g) 3757.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 1289.9	UTSIC	Dry Sample Weight (g)	75.49	53.78	66.03	58.14	52.71	51.65	50 67	24 03	
Sample Weight (g) 71.3 6 48.4 52.4 45.7 62.9 63.8 52.5 69.2 Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask & Water, and Sample (g) 673.32 680.56 673.32 680.56 673.23 680.48 673.06 680.52 Specific Gravity of Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Solids 2.61 2.42 2.50 2.14 2.22 2.24 2.40 2.36 Volume of Sample (g) 375.7 3191.4 3319.1 3255.3 3076.6 3255.3 3075.5 Weight of Solids (g) 3757.7 3613.6 3648.1 3710.6 3309.7 3471.2 3043.1 Volume of Solids 1437.7 1493.3 1457.0 1734.8 1488.5 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14	M	Moisture Content						20:10	22:07	04.00	72.34
Sample Weight (g) 74.36 47.6 48.95 56.49 40.09 44.73 47.85 38.43 Flask & Water (g) 673.32 680.56 673.32 680.56 673.32 680.56 673.23 680.48 673.06 680.52 Flask Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Sample (g) 2.61 2.42 2.50 2.14 2.22 2.24 701.01 702.66 Volume of Sample (cm³) 3395.7 3191.4 3319.1 3255.3 3255.3 3076.6 2.36 Weight of Solids (g) 375.7 3613.6 348.1 3710.6 3395.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (g) 375.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1433.7 1433.8 1488.5 1488.5 1483.6 1389.9	,	(%)	37.2	48.4	52.4	45.7	62.9	63.8	52.5	69.2	24.1
Flask & Water (g) 673.32 680.56 673.23 680.56 673.23 680.48 673.06 680.52 Flask, Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Solids 2.61 2.42 2.50 2.14 2.22 2.24 701.01 702.66 Volume of Sample (cm³) 3395.7 3191.4 3319.1 3255.3 3255.3 3076.6 2.36 Weight of Solids (g) 3757.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1433.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.143.6 1.35	/ΤΙV	Sample Weight (g)	74.36	47.6	48.95	56.49	40.09	44.73	47.85	38.43	69.41
Flask, Water, and Sample (g) 719.23 708.49 702.72 710.64 695.29 705.24 701.01 702.66 Specific Gravity of Solids 2.61 2.42 2.50 2.14 2.22 2.24 2.40 2.36 Volume of Sample (cm³) 3395.7 3191.4 3319.1 3255.3 3076.6 3255.3 3076.6 3255.3 3076.6 Weight of Solids (g) 375.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	AЯS	Flask & Water (g)	673.32	680.56	673.32	680.56	673.23	680.48	673.06	680.52	673.02
Specific Gravity of Solids 2.61 2.42 2.50 2.14 2.22 2.24 2.40 2.36 Volume of Sample (cm³) 3395.7 3191.4 3319.1 3255.3 3076.6 3255.3 3075.5 Weight of Solids (g) (cm³) 3757.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	IFIC (Flask, Water, and Sample (g)	719.23	708.49	702.72	710.64	695.79	705 24	701 01	35 602	716 77
Solids 2.61 2.42 2.50 2.14 2.22 2.24 2.40 2.36 Volume of Sample (cm³) 3395.7 3191.4 3319.1 3255.3 3076.6 3255.3 3075.5 Weight of Solids (clm³) 3757.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1488.5 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	?bEC	Specific Gravity of							10:10	702:00	/ 70.7/
Weight of Solids (cm³) 3395.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3025.3 Weight of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 128.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	S	Solids Volume of Cample	2.61	2.42	2.50	2.14	2.22	2.24	2.40	2.36	2.70
Weight of Solids (g) 3757.7 3613.6 3648.1 3710.6 3309.7 3218.9 3471.2 3043.1 Volume of Solids (cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	0	(cm ³)	3395.7	3191.4	3319.1	3255.3	3255.3	3076.6	3255.3	3025.5	31787
Volume of Solids 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	ΙΤΑЯ	Weight of Solids (g)	3757.7	3613.6	3648.1	3710.6	3309 7	3718 0	2471.2	2042 4	4777.3
(cm³) 1437.7 1493.3 1457.0 1734.8 1488.5 1437.1 1443.6 1289.9 Void Ratio 1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	alc	Volume of Solids						2210.3	34/17	3043.I	45/6.3
1.36 1.14 1.28 0.88 1.19 1.14 1.25 1.35	٥Λ	(cm ₃)	1437.7	1493.3	1457.0	1734.8	1488.5	1437.1	1443.6	1289.9	1691.8
		Void Ratio	1.36	1.14	1.28	0.88	1.19	1.14	1.25	1.35	0.88

(g) (g) ple ple ple ple ple ple ple ple ple ple	GA-1C	Fly Ash Pond East Dike - Section K-K	Dike - Sec	tion K-K
Tube Weight (ft) Tube & Sample Weight (g) Sample Weight (lbs) Recovery Length (ft) Sample Weight (ft) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (g) Moisture Content (g) Flask & Water (g) Flask, Water, and Sample (g) Sample (g) Sample (g) Sample (g) Colume of Sample (cm³) Weight of Solids (cm³)		Sample	ST-1	ST-2
Tube & Sample Weight (g) Sample Weight (g) Sample Weight (lbs) Recovery Length (ft) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Flask & Water (g) Flask & Water (g) Flask, Water, and Sample (g) Sample (g) Sample (g) Flask, Water (g) Flask, Water (g) Flask, Water (g) Flask, Water (g) Flask, Water (g) Solids Volume of Sample (cm³) Volume of Solids (cm³)		Sample Depth (ft)	39.0-41.5	69.0-71.5
Tube & Sample Weight (g) Sample Weight (lbs) Recovery Length (ft) Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (g) Moisture Content (g) Flask & Water (g) Flask & Water (g) Flask & Water (g) Sample (g) Sample (g) Sample (g) Sample (g) Content Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Volume of Solids (cm³)		Tube Weight (g)	2667	2667
Weight (g) Sample Weight (lbs) Recovery Length (ft) Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (g) Flask & Water (g) Flask, Water, and Sample (g) Sample (g) Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	··	Tube & Sample		
Sample Weight (g) Sample Volume (ft) Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)		Weight (g)	5095	8663
Sample Weight (lbs) Recovery Length (ft) Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (g) Moisture Content (g) Flask & Water (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	,	Sample Weight (g)	2428	2996
Recovery Length (ft) Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Roisture Content (%) Sample Weight (g) Flask & Water (g) Flask & Water (g) Flask & Water (g) Sample (g) Sample (g) Sample (g) Content Solids Volume of Sample (cm³) Weight of Solids Volume of Solids (cm³)	(TISN:	Sample Weight (lbs)	5.35	13.22
Sample Volume (ft³) Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (%) Sample Weight (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	3 0	Recovery Length (ft)	0.98	2.58
Density (lbs/ft³) Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (%) Sample Weight (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)		Sample Volume (ft³)	0.044	0.116
Moist Sample Weight (g) Dry Sample Weight (g) Moisture Content (%) Sample Weight (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (g) Volume of Solids (cm³)		Density (lbs/ft³)	121.2	113.7
Dry Sample Weight (g) Moisture Content (%) Sample Weight (g) Flask & Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Volume of Solids (cm³)	ВЕ	Moist Sample Weight (g)	75.15	84.75
Moisture Content (%) Sample Weight (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids Volume of Solids (cm³)	UTSIO	Sample (g)	46.08	65.06
Sample Weight (g) Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids Volume of Solids (cm³)	M	Moisture Content	,	
Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	,	(%)	93.1	30.3
Flask & Water (g) Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	ſΤΙV	Sample Weight (g)	43.65	57.43
Flask, Water, and Sample (g) Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (g) Volume of Solids (cm³)	/АЯ	Flask & Water (g)	673.41	680.85
Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (cm³)	9)	Flask, Water, and		
Specific Gravity of Solids Volume of Sample (cm³) Weight of Solids (g) Volume of Solids (cm³)	HIC		696.56	717.27
Solids Volume of Sample (cm³) Weight of Solids (g) Volume of Solids (cm³)	bEC			
Weight of Solids (g) Volume of Solids (cm ³)	S	Solids	2.13	2.73
Weight of Solids (g) Volume of Solids (cm³)	o	voluine or sample (cm³)	1251.0	3293.6
Volume of Solids (cm ³)	IТАЯ		1488.8	4602 9
(cm³)	alc	177		
_	٥Λ	(cm³)	699.2	1683.9
Void Ratio 0.79		Void Ratio	0.79	96.0

1.5 39.0-41.5 5 3 2665 1.7952 1.1.66 1.1.6	GA-1D	Fly Ash Pond East Dike - Section K-K	d East Dike	- Section k	C-K
Sample Depth (ft) 29.0-31.5 39.0-41.5 Tube Weight (g) 2668 2665 Tube & Sample 5014 7952 Sample Weight (g) 2346 5287 Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Sample Weight (lbs)/ft³ 98.1 104.3 Moist Sample 80.9 84.89 Dry Sample Weight 52.33 57.14 Moisture Content (g) 52.33 57.14 Moisture Content (g) 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask & Water, and 5a.6 5a.6 Sample (g) 698.44 705.66 Specific Gravity of 5a.2 2.12 Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 <th></th> <th>Sample</th> <th>ST-1</th> <th>ST-2</th> <th>ST-3</th>		Sample	ST-1	ST-2	ST-3
Tube Weight (g) 2668 2665 Tube & Sample Sold 7952 Sample Weight (g) 2346 5287 Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Recovery Length (ft) 1.17 2.48 Sample Volume (ft³) 98.1 104.3 Moist Sample 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (g) 52.33 57.14 Moisture Content (g) 673.36 680.53 Flask Water (g) 673.36 680.53 Flask Water, and Sample (g) 673.36 680.53 Solids 2.12 2.31 Volume of Sample (m³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 1517.5 3558.7 Volume of Solids 116.1 116.1 Cm³) 116.1 116.1 Volume of Solids 116.1 116.1		Sample Depth (ft)	29.0-31.5	39.0-41.5	59.0-61.5
Tube & Sample 5014 7952 Sample Weight (g) 2346 5287 Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Recovery Length (ft) 1.17 2.48 Sample Volume (ft²) 0.053 0.112 Density (lbs/ft³) 98.1 104.3 Weight (g) 80.9 84.89 Dry Sample Weight 52.33 57.14 Moisture Content (g) 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask & Water, and Sample (g) 698.44 705.66 Specific Gravity of Sample (g) 2.12 2.31 Volume of Sample (m³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (g) 1517.5 3558.7 Volume of Solids (g) 1543.2 Volume of Solids (g) 1517.5 3558.7 Volume of Solids (g) 1517.5 1493.5		Tube Weight (g)	2668	2665	2673
Sample Weight (g) 2346 5287 Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Sample Volume (ft²) 0.053 0.112 Density (lbs/ft³) 98.1 104.3 Moist Sample Weight (g) 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (g) 673.36 680.53 Flask & Water (g) 673.36 680.53 Flask & Water (g) 673.36 680.53 Flask & Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids (g) 1517.5 3558.7 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05		Tube & Sample	ŗ		
Sample Weight (g) 2346 5287 Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Sample Volume (ft²) 0.053 0.112 Density (lbs/ft²) 98.1 104.3 Moist Sample 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (g) 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask Water, and Sample (g) 673.36 680.53 Flask Water, and Sample (g) 698.44 705.66 Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05		MACIBILITY (R)	5014	7327	7533
Sample Weight (lbs) 5.17 11.66 Recovery Length (ft) 1.17 2.48 Sample Volume (ft³) 0.053 0.112 Density (lbs/ft³) 98.1 104.3 Moist Sample Weight (g) 80.9 84.89 Dry Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 673.36 680.53 Flask, Water, and Sample (g) 673.36 680.53 Volume of Sample Volume of Sample Volume of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05	٨	Sample Weight (g)	2346	5287	4860
Sample Volume (ft³) 0.053 0.112 Density (lbs/ft³) 98.1 104.3 Moist Sample Weight (g) 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (%) 54.6 48.6 Sample Weight (g) 673.36 680.53 Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids (g) 1517.5 3558.7 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2	TISNE	Sample Weight (lbs)	5.17	11.66	10.71
Sample Volume (ft³) 0.053 0.112 Density (lbs/ft³) 98.1 104.3 Moist Sample 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (g) 52.33 57.14 Moisture Content (g) 673.36 48.6 Sample Weight (g) 673.36 680.53 Flask & Water (g) 673.36 680.53 Flask Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05	Id	Recovery Length (ft)	1.17	2.48	2.36
Density (lbs/ft³) 98.1 104.3 Moist Sample 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Contemt (%) 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask Water, and Sample (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05		Sample Volume (ft³)	0.053	0.112	0.106
Moist Sample 80.9 84.89 Dry Sample Weight (g) 52.33 57.14 Moisture Content (%) 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05		Density (lbs/ft³)	98.1	104.3	100.7
Bry Sample Weight	ВЕ	Moist Sample Weight (g)	80.9	84.89	84.19
Moisture Content 54.6 48.6 Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05	UTSIO	Dry Sample Weight (g)	52.33	57.14	59.66
54.6 48.6 Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5 Volume of Solids (g) 1517.5 1517.5	W	Moisture Content			
Sample Weight (g) 47.49 44.37 Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05		(%)	54.6	48.6	41.1
Flask & Water (g) 673.36 680.53 Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05	YTI/	Sample Weight (g)	47.49	44.37	46.25
Flask, Water, and Sample (g) 698.44 705.66 Specific Gravity of Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05	/АЯ	Flask & Water (g)	673.36	680.53	673.19
Solids 2.12 2.31 Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05	e SIRI	Flask, Water, and Sample (g)	698.44	705.66	700.87
Volume of Sample (cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05	SPEC	Specific Gravity of Solids	2.12	2.31	2.49
(cm³) 1493.6 3165.9 Weight of Solids (g) 1517.5 3558.7 Volume of Solids (cm³) 716.1 1543.2 Void Ratio 1.09 1.05		Volume of Sample			
Weight of Solids (g) 1517.5 3558.7 Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05	OI.	(cm³)	1493.6	3165.9	3012.7
Volume of Solids 716.1 1543.2 Void Ratio 1.09 1.05	тая с	Weight of Solids (g)	1517.5	3558.7	3444.0
1.09	ΙΟΛ	Volume of Solids (cm³)	716.1	1543.2	1382.8
Cont		Void Ratio	1.09	1.05	1.18

GA-2	Fly Ash Pond East Dike		- Section M-M	I-M
	Sample	ST-1	ST-2	ST-3
	Sample Depth (ft)	39.0-41.5	59.0-61.5	69.0-70.5
:.	Tube Weight (g)	5669	792	2659
	Tube & Sample Weight (g)	4859	8088	6679
,	Sample Weight (g)	2190	6151	4020
/TISN:	Sample Weight (lbs)	4.83	13.56	8.86
1 0	Recovery Length (ft)	1.10	2.50	1.70
- ' - ·	Sample Volume (ft³)	0.050	0.113	0.077
	Density (lbs/ft³)	97.4	120.3	115.6
BE	Moist Sample Weight (g)	62.21	73.94	96.65
UTSIO	Dry Sample Weight (g)	34.09	59.79	79.79
M	Moisture Content (%)	82.5	23.7	21.1
YTI	Sample Weight (g)	32.52	51.63	55.71
νΑя	Flask & Water (g)	686.86	673.69	681.01
FIC G	Flask, Water, and Sample (g)	704.09	706.28	714.17
SPEC	Specific Gravity of Solids	2.13	2.71	2.47
O	Volume of Sample (cm³)	1404.2	3191.4	2170.2
ІТАЯ (Weight of Solids (g)	1200.1	4973.9	3318.7
JION	Volume of Solids (cm³)	564.2	1834.3	1343.3
	Void Ratio	1.49	0.74	0.62

GA-3	Fly Ash Pond East Dike	d East Dike	- Section L-L	-1
	Sample	ST-1	ST-2	ST-3
	Sample Depth (ft)	29.0-31.5	49.0-51.5	79.0-81.5
	Tube Weight (g)	2655	2653	2659
	Tube & Sample			
	Weight (g)	5565	7463	8276
,	Sample Weight (g)	2910	4810	5617
YTISN:	Sample Weight (lbs)	6.42	10.60	12.38
DE	Recovery Length (ft)	1.51	2.34	2.27
	Sample Volume (ft³)	0.068	0.105	0.102
	Density (lbs/ft³)	94.2	100.5	121.0
ВЕ	Moist Sample Weight (g)	54.9	84.35	93.18
UTSIO	Dry Sample Weight (g)	40.85	53.78	66.03
M	Moisture Content (%)	34.4	56.8	41.1
YTI	Sample Weight (g)	37.96	43.22	65.77
VΑЯ	Flask & Water (g)	680.82	673.27	680.82
IFIC GI	Flask, Water, and Sample (g)	700.62	697.43	721.95
SPEC	Specific Gravity of Solids	2.09	2.27	2.67
C	Volume of Sample (cm³)	1927.6	2987.2	2897.8
нтая (Weight of Solids (g)	2165.3	3066.8	3980.4
ΙΟΛ	Volume of Solids (cm³)	1035.9	1352.4	1491.2
	Void Ratio	0.86	1.21	0.94

GA-4A	Bottom Ash Pond West Dike -	nd West Di	ke - Section A-A	n A-A
<i>-</i>	Sample	ST-1	ST-2	ST-3
	Sample Depth (ft)	28.0-30.5	32.0-34.5	36.0-38.0
	Tube Weight (g)	2666	7997	2678
	Tube & Sample	2032	7165	6105
	Sample Weight (g)	4836	4498	3427
YTISN	Sample Weight (lbs)	10.66	9.92	7.56
DE	Recovery Length (ft)	2.55	2.24	1.52
	Sample Volume (ft³)	0.115	0.101	0.069
	Density (lbs/ft³)	67.7	98.2	110.3
ВE	Moist Sample Weight (g)	77.78	72.51	72.92
UTSIO	Dry Sample Weight (g)	41.3	51.55	52.06
M	Moisture Content (%)	88.3	40.7	40.1
ΥT	Sample Weight (g)	30.22	35.05	51.82
VA۶	Flask & Water (g)	680.47	673.21	673.21
FIC GI	Flask, Water, and Sample (g)	696.81	692.85	705.99
SPEC	Specific Gravity of Solids	2.18	2.27	2.72
0	Volume of Sample (cm³)	3255.3	2859.5	1940.4
тдя (Weight of Solids (g)	2567.8	3197.8	2446.6
ΙΟΛ	Volume of Solids (cm³)	1179.4	1405.9	899.0
	Void Ratio	1.76	1.03	1.16

	Bottom Ash Pond	d West
GA-4B	Dike - Section	A-A
	Sample	ST-1
	Sample Depth (ft)	29.0-31.5
	Tube Weight (g)	2684
	Tube & Sample	
	Weight (g)	7601
,	Sample Weight (g)	4917
/TISN:	Sample Weight (lbs)	10.84
3 0	Recovery Length (ft)	2.38
	Sample Volume (ft³)	0.107
	Density (lbs/ft³)	101.0
	Moist Sample	
381	Weight (g)	80.67
UTSI	Dry Sample Weight	
IOI		48.5
W	Moisture Content	2 99
YTI	Sample Weight (g)	47.83
VA۶	Flask & Water (g)	680.66
19 3	Flask, Water, and	
lН	Sample (g)	707.42
EC	Specific Gravity of	
ıs	읡	2.27
	Volume of Sample	
OI	(cm³)	3038.3
ІТАЯ (Weight of Solids (g)	2956.2
JIC.	Volume of Solids	
Λ	(cm³)	1302.2
	Void Ratio	1.33

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

: 09-387

CLIENT

: AEP

DATE

: December 18, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1A ST-6 - 20 psi

Depth of Tested Sample:

44.5' - 47.0'

Remolded:

No_

Sample Type

Shelby Tube

Sample Description:

Fly Ash, dark gray - 20 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

5.55

Volume (ft³): 0.0202

Wet Density (PCF):

104.0

Diameter (in.):

2.83

Weight (lbs): 2.10

Dry Density (PCF):

71.9

Area (ft²):

0.0437

Moisture (%): 44.6

Chamber Pressure (psi):

10

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

L = Length of Sample, along path of flow, (cm)

inflow and outflow, (cm³)

Q = Quantity of flow, taken as the average of

t = Interval of time, over which the flow Q occurs, (sec)

A = Cross-sectional area of specimen, (cm²)

h = Difference in hydraulic head across

specimen, (cm)

 $k = \underline{QL}$ cm/sec

(600.0)(14.10) (40.58)(14,506)(211.01)

8,460.00

124,211,770.81

 $k = 6.81 \times 10^{-5} \text{ cm/sec}$

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

: 09-387

CLIENT

: AEP

DATE

: December 18, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1A ST-6 - 40 psi

Depth of Tested Sample:

44.5' - 47.0'

Remolded:

_No

Sample Type

Shelby Tube

Sample Description:

Fly Ash, dark gray - 40 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

5.58

Volume (ft³): 0.0206

Wet Density (PCF):

103.8

Diameter (in.):

2.85

Weight (lbs): 2.14

Dry Density (PCF):

71.5

Area (ft2):

0.0443

Moisture (%): 45.2

Chamber Pressure (psi):

___10

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

___8

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

5

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

 $k = \underline{OL}$ cm/sec

Ath

L = Length of Sample, along path of flow, (cm)

Q = Quantity of flow, taken as the average of

inflow and outflow, (cm³)

k = (600.0)(14.17)

(41.16)(8,599)(211.01)

A = Cross-sectional area of specimen, (cm²)

k = <u>8,502.00</u>

t = Interval of time, over which the flow Q occurs, (sec)

h = Difference in hydraulic head across

specimen, (cm)

 $k = 1.14 \times 10^{-4} \text{ cm/sec}$

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

: 09-387

CLIENT

: AEP

DATE

: December 18, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1A ST-6 - 60 psi

Depth of Tested Sample:

44.5' - 47.0'

Remolded:

_No

Sample Type

Shelby Tube

Sample Description:

Fly Ash, dark gray - 60 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

__5.44

Volume (ft³): 0.0202

Wet Density (PCF):

104.0

:

Diameter (in.):

2.86

Weight (lbs): 2.10

Dry Density (PCF):

73.5

Area (ft2):

0.0446

Moisture (%): 41.6

Chamber Pressure (psi):

___10___

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

____8___

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

5

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

k = QL cm/sec

Ath

L = Length of Sample, along path of flow, (cm)

Q = Quantity of flow, taken as the average of

inflow and outflow, (cm3)

 $k = \underline{\qquad (600.0)(13.82)}$

(41.45)(9,531)(211.01)

A = Cross-sectional area of specimen, (cm²)

k = 8,292.00

t = Interval of time, over which the flow Q occurs, (sec)

'1 = Difference in hydraulic head across specimen, (cm)

 $k = 9.95 \times 10^{-5} \text{ cm/sec}$

Total Normal Stress, ksf ————
Effective Normal Stress, ksf ———

Туре	of	Test:

CU with Pore Pressures

Sample Type: Shelby Tube

Description: Fly Ash, dark gray

LL= 44

Specific Gravity= 2.43

Remarks:

	Sa	mple No.	1	2	3	
		Water Content, %	44.6	45.2	41.6	
		Dry Density, pcf	71.9	71.5	73.5	
	Initia	Saturation, %	97.7	98.0	94.8	
	<u> </u>	Void Ratio	1.1095	1.1210	1.0651	
		Diameter, in.	2.83 5.55	2.85 5.58	2.86 5.44	
3		Height, in.				
٠,		Water Content, %	40.1	44.4	40.7	
	St	Dry Density, pcf	76.8	73.0	76.3	
,	Test	Saturation, %	100.0	100.0	100.0	
	Yŧ.	Void Ratio	0.9746	1.0779	0.9883	
1	. `	Diameter, in.	2.77	2.83	2.82	
		Height, in.	5.43	5.54	5.37	
ļ	Str	ain rate, in./min.	0.00	0.00	0.00	
1	Bad	ck Pressure, psi	30.00	30.00	30.00	
	Cel	l Pressure, psi	50.00	70.00	90.00	
	Fai	I. Stress, ksf	14.3	19.4	21.8	
	Ţ	otal Pore Pr., ksf	4.5	4.8	4.5	
	Ult.	Stress, ksf				
	T	otal Pore Pr., ksf				
┨	$\overline{\sigma}_1$	Failure, ksf	17.0	24.7	30.3	
	$\overline{\sigma}_3$	Failure, ksf	2.7	5.3	8.5	

Client: American Electric Power

Project: Philip Sporn Plant

Sample Number: GA-1A ST6

Depth: 44.5'-47.0'

Proj. No.: 09-387

Date Sampled: 12/18/09

TRIAXIAL SHEAR TEST REPORT

Geo/Environmental Associates, Inc.

Figure 1

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

: 09-387

CLIENT

: AEP

DATE

: December 29, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1C ST-2 - 20 psi

Depth of Tested Sample:

69.0' - 71.5'

Remolded:

No

Sample Type

Shelby Tube

Sample Description:

Clay, silty brown - 20 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

5.15

Volume (ft³): 0.0190

Wet Density (PCF):

122.7

Diameter (in.):

2.85

Weight (lbs): 2.33

Dry Density (PCF):

96.3

Area (ft2):

0.0443

Moisture (%): 27.4

Chamber Pressure (psi):

___10___

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

8

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

5

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

 $k = \underline{OL}$ cm/sec

Al

L = Length of Sample, along path of flow, (cm)

Q = Quantity of flow, taken as the average of

inflow and outflow, (cm3)

(16.8)(13.08) (41.16)(63,300)(211.01)

A = Cross-sectional area of specimen, (cm²)

 $k = \frac{219.74}{540.771.363.39}$

t = Interval of time, over which the flow Q occurs, (sec)

h = Difference in hydraulic head across

specimen, (cm)

 $k = 4.00 \times 10^{-7} \text{ cm/sec}$

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

:09-387

CLIENT

: AEP

DATE

: December 29, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1C ST-2 - 40 psi

Depth of Tested Sample:

69.0' - 71.5'

Remolded:

No

Sample Type

Shelby Tube

Sample Description:

Clay, silty brown - 40 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

5.97

Volume (ft³): <u>0.0224</u>

Wet Density (PCF):

121.7

Diameter (in.):

2.87

Weight (lbs): <u>2.72</u>

Dry Density (PCF):

94.9

Area (ft2):

0.0449

Moisture (%): 28.2

Chamber Pressure (psi):

___10

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

___8

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

5

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

 $k = \underline{OL}$ cm/sec

L = Length of Sample, along path of flow, (cm)

Q = Quantity of flow, taken as the average of inflow and outflow (am^3)

inflow and outflow, (cm³)

k = (16.8)(15.16)

(41.74)(63,300)(211.01)

A = Cross-sectional area of specimen, (cm²)

 $k = \underbrace{254.69}_{557,518,383.42}$

t = Interval of time, over which the flow Q occurs, (sec)

specimen, (cm)

 $k = 4.57 \times 10^{-7} \text{ cm/sec}$

PROJECT NAME

: Philip Sporn Plant

PROJECT NUMBER

: 09-387

CLIENT

: AEP

DATE

: December 29, 2009

SAMPLE LOCATION AND CONDITIONS

Sample Id.:

GA-1C ST-2 - 60 psi

Depth of Tested Sample:

69.0' - 71.5'

Remolded:

No

Sample Type

Shelby Tube

Sample Description:

Clay, silty brown - 60 psi triaxial specimen

INITIAL SPECIMEN PROPERTIES

Length (in.):

5.88

Volume (ft³): 0.0220

Wet Density (PCF):

121.9

Diameter (in.):

2.87

Weight (lbs): 2.68

Dry Density (PCF):

95.1

Area (ft2):

0.0449

Moisture (%): 28.2

Chamber Pressure (psi):

___10__

Change in Pore Pressure (psi):

2.0

Influent Pressure (psi):

.___8

Change in Chamber Pressure (psi):

2.0

Back Pressure (psi):

5

"B" Factor:

1.0

PERMEABILITY CALCULATIONS

k = Hydraulic Conductivity, (cm/sec)

 $k = \underline{OL}$ cm/sec

Am

L = Length of Sample, along path of flow, (cm)

Q = Quantity of flow, taken as the average of

inflow and outflow, (cm³)

k = (23.0)(14.94)

(41.74)(69,600)(211.01)

A = Cross-sectional area of specimen, (cm²)

 $k = \underbrace{343.62}_{613.005,995.04}$

t = Interval of time, over which the flow Q occurs, (sec)

ነ = Difference in hydraulic head across

specimen, (cm)

 $k = 5.61 \times 10^{-7} \text{ cm/sec}$

Total Normal Stress, ksf -----Effective Normal Stress, ksf ----

	Sa	mple No.	1	2	3	
		Water Content, %	27.4	28.2	28.2	- u
3	l _	Dry Density, pcf	96.3	94.9	95.1	
	Initia	Saturation, %	98.1	97.8	98.1	
	Ξ	Void Ratio	0.7572	0.7825	0.7782	
		Diameter, in.	2.85	2.87	2.87	
_		Height, in.	5.15	5.97	5.88	
2		Water Content, %	25.1	24.1	25.2	
	77	Dry Density, pcf	100.6	102.3	100.6	
1	Test	Saturation, %	100.0	100.0	100.0	
	At.	Void Ratio	0.6812	0.6539	0.6823	
i	1	Diameter, in.	2.81	2.80	2.82	
		Height, in.	5.08	5.82	5.77	
	Str	ain rate, in./min.	0.00	0.00	0.00	
	Bad	ck Pressure, psi	30.00	30.00	30.00	
	Cel	Il Pressure, psi	50.00	70.00	90.00	
1	Fai	l. Stress, ksf	4.4	5.5	8.0	
	7	otal Pore Pr., ksf	5.4 ⁻	7.8	9.5	
-	Ult.	Stress, ksf				
-	Ţ	otal Pore Pr., ksf				
٦	$\overline{\sigma}_1$	Failure, ksf	6.2	7.8	11.4	
	$\overline{\sigma}_3$	Failure, ksf	1.8	2.3	3.4	

Type of Test:

CU with Pore Pressures

Sample Type: Shelby Tube

Description: Clay, silty, brown

LL= 35

PL= 19

PI= 16

Specific Gravity= 2.71

Remarks:

Project: Philip Sporn Plant

Sample Number: GA-1C ST2

Client: American Electric Power

Depth: 69.0'-71.5'

Proj. No.: 09-387

Date Sampled:

TRIAXIAL SHEAR TEST REPORT

Geo/Environmental Associates, Inc.

Figure 1

Geo/Environmental Associates, Inc.

Job Name: AEP Philip Sporn

Job Number: 09-387

Title: Gmax Calcs for Section H-H

Computed By: SWF Checked by:

Date: 4/26/10 Sheet: 1 Of: 2

Small Strain Shear Modulus [Gnex (14/4)] =
$$\frac{y \cdot V_{0}^{2}}{g}$$

Where: $\frac{1}{2}$ W= Unit weight (44/42)

 $V_{0} = Shear wave velocity (ft/s)$
 $g = gravitational acceleration (32.2 + 1/s^{2})$

Silty Sand (1) $\frac{130(694)^{2}}{32.2} = 194493 M/H^{2}$

Silty Sand (2) $\frac{107(978.7)^{2}}{32.2} = 3182930 M/H^{2}$

Gravelly Sand (3) $\frac{105(978.7)^{2}}{32.2} = 3123436 M/H^{2}$

Silty Clay (4) $\frac{115(978.7)^{2}}{32.2} = 3420906 M/H^{2}$

Silty Sand (5) $\frac{131(694)^{2}}{32.2} = 1959450 M/H^{2}$

Sandy Silt (6) $\frac{133(694)^{2}}{32.2} = 1933302 M/H^{2}$

Silty Sand (7) $\frac{10(476.25)^{2}}{32.2} = 77483 M/H^{2}$

Silty Sand (8) $\frac{112(198.7)^{2}}{32.2} = 3331665 M/H^{2}$

Geo/Environmental Associates, Inc.

Job Name: AFP Philip Sporn

Job Number: 09 - 387

Title: Gmax Calcs for Section A-A

Computed By: SWF Checked by:

Date: 4/26/10 Sheet: 2 Of: 2

Clayer Sand (9) $\frac{115(1377.2)^2}{32.7} = 6816193 \frac{165}{442}$ Sand (10) $123(1377.2) = 7245081 \frac{16}{442}$ Sand and Gravel (11) $123 (1377.2)^2 = 7245081 \frac{165}{42}$ Riprop (12) $\frac{115(1178.9)^2}{37.7} = 4963590 \frac{165/44^2}{37.7}$

Geo/Environmental Associates, Inc.

Job Name: AEP Philip Sporn

Job Number: 09-387

Title: Gmax Calcs for Section A-A

Computed By: SWF Checked by:

Date: 4 / 2 6 / 10 Sheet: / Of: /

Small Strain Shear Modulus
$$[G_{max}(Ab/H_{12})] = \frac{8 \cdot V_{1}}{g}$$

Where: $8 = V_{nit} | V_{night}(Ab/H_{12})$
 $V_{night}(Ab/H_{12})$
 NEOUS REFERENCES

CSR GRAPH DEVELOPED BY OSU FOR SPORN FLY ASH DAMPING RATIO OF DIFFERENT TYPES OF SOILS (KOKUSHO) SEED-IDRISS DAMPING VALUES FROM SHAKE91

Sporn Fly Ash Triaxial Cyclic Strength

ĺ.

Fig. 10.20 Damping ratio of different types of soils (Kokusho, 1987)

FROM GEOTECHNICAL EARTHQUAKE ENGINEERING TOY IKUO TOWHATA 2008

Fig. B-2 Moduius Reduction and Damping Values Used for Sample Problem

FROM SHAKE 91 LISERS MANUAL (SEED IDRISS)

APPENDIX IV LEM SLOPE STABILITY ANALYSES

LIMIT EQUILIBRIUM METHOD SLOPE STABILITY ANALYSIS SUMMARY RAILWAY-INDUCED VIBRATION ASSESSMENT BOTTOM ASH AND FLY ASH DIPOSAL FACILITIES PHILIP SPORN PLANT NEW HAVEN, MASON COUNTY, WEST VIRGINIA GA FILE NO. 09-387

GENERAL

Geo/Environmental Associates, Inc. (GA) has prepared pseudo-static slope stability analyses for the western dikes of the Bottom Ash Disposal and Fly Ash Disposal Facilities at the Philip Sporn Plant. Specifically, GA has evaluated Section A-A for the Bottom Ash Disposal Facility Western Dike and Section H-H for the Fly Ash Disposal Facility Western Dike. The slope stability analyses were conducted using the computer program *SLOPE/W*. *SLOPE/W* is developed by GEO-SLOPE International, Ltd. of Calgary, Alberta, Canada.

The slope stability analyses provided herein are based on the Morgenstern-Price Limit Equilibrium Method (LEM) provided in the *SLOPE/W* program. The Morgenstern-Price LEM is a robust method that satisfies both moment and force equilibrium conditions. Furthermore, the Morgenstern-Price LEM is capable of utilizing user defined functions to develop both shear and normal interslice forces. More specifically, the half-sine function was applied to the slope stability analyses provided herein to determine interslice forces.

The slope stability analyses were performed in both the upstream and downstream directions for both of the critical sections. At the request of the USEPA, both shallow-seated and deep-seated (global) slip surfaces were modeled in the slope stability analyses. The phreatic levels used in the analyses were adapted from previous seepage and stability analyses prepared for the critical sections by AEP. We understand that the phreatic levels developed by AEP were based on SEEP/W seepage analyses and from site specific piezometer readings and subsurface exploration data.

Ground acceleration loadings developed from railway vibration monitoring were applied in the LEM pseudo-static analyses. GA conservatively applied the accelerations from the dike exterior toe vibration monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction LEM slope stability analyses and we applied the accelerations from the dike crest monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction LEM slope stability analyses. The acceleration values used in the analyses are provided in Table IV-1.

TABLE IV-1
SUMMARY OF ACCELERATIONS USED IN
LIMIT EQUILIBRIUM METHOD PSEUDO-STATIC SLOPE STABILITY ANALYSES

Critical Section	Vibration Monitoring Location	Maximum Acc	eleration (g's)
		Horizontal	Vertical
Bottom Ash Disposal Facility	Location A (Exterior Toe - Adjacent to Track) Downstream Direction Analyses	0.033	0.008
Section A-A	Location B (Crest) Upstream Direction Analyses	0.013	0.002
Fly Ash Disposal Facility	Location C (Exterior Toe - Adjacent to Track) Downstream Direction Analyses	0.046	0.008
Section H-H	Location D (Crest) Upstream Direction Analyses	0.010	0.003

MATERIAL PARAMETERS

Strength parameters for the various embankment and foundation materials used in the slope stability analyses for critical Sections A-A and H-H are provided in Tables IV-2 and IV-3, respectively. In general, the strength parameters were selected based on previous parameters developed by AEP and based on laboratory testing conducted by GA in December 2009 and January 2010. Effective stress conditions were assumed; therefore, material parameters used in the slope stability analyses and presented herein are effective strength parameters. Additionally, the Mohr-Coulomb material model was used in the analyses.

TABLE IV.2. LEM MATERIAL PARAMETERS FOR SECTION A-A ANALYSES	MATERIAL	PARAMETE	RS FOR SEC	TION A-A A	NALYSES							
	Silty Clay (1)	Fly Ash (2)	Bottom Ash (3)	Clayey Sand (4)	Bottom Ash (5)	Gravelly Sand (6)	Clayey Sand (7)	Road Material	Clayey Sand (9)	Sand (10)	Sand & Gravel	Riprap (12)
Moist Unit Weight γ (pcf)	123	139	80	105	62	111	104	145	115	123	123	115
Saturated Unit Weight γ (pcf)	123	134	. 08	105	80	115	110	145	115	123	123	115
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1.2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)
Cohesion	0	0	0	0	0	0	0	0	0	0	0	0
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)
Phi Angle φ (degrees)	36	33	36	31	38	34	34	36	29	29	32	38
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1,2)	AEP ^(1,2)	AEP ^(1,2)

Note:

(1) AEP Philip Sporn Electric Generating Plant Bottom Ash Facility - Engineering Report, 1996

(2) AEP Philip Sporn Power Plant Bottom Ash Disposal Facility - Stability Analysis, 2009

TABLE IV.2. LEM MATERIAL PARAMETERS FOR SECTION H-H ANALYSES

	Silty	Silty	Gravelly	Silty	Silty	Sandy	Fly Ash	Rock Fill
	Sand (1)	Sand (2)	Sand (3)	Clay (4)	Sand (5)	Silt (6)	.6	6)
Moist Unit Weight γ (pcf)	125	107	105	115	126	125	06	115
Saturated Unit Weight γ (pcf)	130	112	110	120	131	130	102	115
Source	$AEP^{(1,2)}$	AEP ^(1,2)	$AEP^{(1,2)}$	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)
Cohesion (psf)	0	0	0	0	0	0	0	0
Source	$\mathrm{AEP}^{(1,2)}$	AEP ^(1,2)	$AEP^{(1,2)}$	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)
Phi Angle φ (degrees)	34	35	33	32	31	27	27	38
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)

Note:

(1) AEP Philip Sporn Electric Generating Plant Bottom Ash Facility - Engineering Report, 1996

(2) AEP Philip Sporn Power Plant Bottom Ash Disposal Facility - Stability Analysis, 2009

SLOPE STABILITY ANALYSIS RESULTS

Graphical output from the LEM slope stability analyses are provided in this appendix. Specifically, the results show the critical slip surface and corresponding safety factor for each of the modeled conditions. The slope stability analysis results are tabulated in Table IV-4.

	SUMMARY O	TABLE IV- F LEM SAFETY FACTORS AI	•	ORS
Critical Section	Analysis Method	Pseudo-Static Loading Condition	Slope and Slip Surface Condition	Safety Factor
Bottom Ash	 	Location A (Exterior Toe)	Downstream (Shallow)	2.96
Disposal Facility Section A-A	LEM	$(a_h = 0.033g, a_v = 0.008g)$	Downstream (Deep)	3.08
		Location B (Crest)	Upstream (Shallow)	1.70
		$(a_h = 0.013g, a_v = 0.002g)$	Upstream (Deep)	2.02
Fly Ash		Location C (Exterior Toe)	Downstream (Shallow)	1.84
Disposal Facility	7.53.4	$(a_h = 0.046g, a_v = 0.008g)$	Downstream (Deep)	2.15
Section H-H	LEM	Location D (Crest)	Upstream (Shallow)	1.40
Section 11-11		$(a_h = 0.010g, a_v = 0.003g)$	Upstream (Deep)	1.65

SUMMARY OF RESULTS

GA used *SLOPE/W* to calculate slope stability safety factors for Section A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike (See Table IV-4 and graphical output provided in this appendix). The safety factors were calculated by applying LEM pseudo-static train loading conditions developed from railway-induced vibrations. Specifically, the LEM pseudo-static analyses were evaluated by conservatively applying accelerations from the dike exterior toe vibration monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction LEM slope stability analyses and by applying the accelerations from the dike crest monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction LEM slope stability analyses.

As shown in Table IV-4, the LEM safety factors equal or exceed 1.70 for the Bottom Ash Disposal Facility Section A-A and 1.40 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface conditions. Moreover, the LEM safety factors equal or exceed 2.02 for the Bottom Ash Disposal Facility Section A-A and 1.65 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. The LEM slope stability analyses indicate that adequate safety factors/stability factors are available for each of the conservatively modeled dike/train loading conditions.

BOTTOM ASH DISPOSAL FACILITY SECTION A-A LEM SLOPE STABILITY ANALYSIS RESULTS

Pool Elevation = 583' Bottom Ash (3) Crest Elevation = 593' Sand and Gravel (11) Clayey Sand (9) Sand (10) Down Stream Shallow Failure Surface File Name: BAP_A-A_Slope-DS_Shallow.gsz Comments: LEM - Location A (Exterior Toe) Fly Ash (2) Title: Sporn Bottom Ash Disposal Facility Railway Induced Pseudo Static Analysis 2.96 Horz Seismic Load: 0.033 Vert Seismic Load: 0.008 Date: 5/3/2010 009 260 540 520 200 580 Elevation (ft)

360

320

280

240

200

160

120

80

4

Distance (ft)

Report generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: LEM - Location A (Exterior Toe) Railway Induced Pseudo Static Analysis Down Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 170 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 4:15:55 PM

File Name: BAP_A-A_Slope-DS_Shallow.gsz

Directory: E:\Final Analysis Files\LEM BAP_A-A GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 4:16:10 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Bottom Ash Pond Section A-A Downstream Seismic Stability with Existing Piezo Levels

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine

PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.05
Minimum Slip Surface Depth: 1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Gravelly Sand (6)

Model: Mohr-Coulomb-Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

Pore Water Pressure
Piezometric Line: 1

Add Weight: Yes

Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (1)

Model: Mohr-Coulomb

Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 " Phi-B: 20 "

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1
Add Weight: Yes

Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Riprap (12)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (35, 584.55556) ft Left-Zone Right Coordinate: (61, 584.11765) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (98.5, 592.81818) ft Right-Zone Right Coordinate: (134.204, 592.328) ft

Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
1	570.5
1.07	570.5
168	583
334	583

Maximum Suction: 120 psf

Seismic Loads

Horz Seismic Load: 0.033 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
de la companya de como de como de la como de la como de la como de la como de la como de la como de la como de			

Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Gravelly Sand (6)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Clayey Sand (7)	46,40,25,26,27,47	85.5

Points

**************************************	X (ft)	Y (ft)					
Point 1	0	500					
Point 2	335	500					
Point 3	0	537					
Point 4	335	537					
Point 5	335	512					
Point 6	0	512					
Paint 7	0	545					
Point 8	335	545					
Point 9	0	589					
Point 10	27	586					
Point 11	39	583					
Point 12	51	575					
Point 13	67	566.5					
Point 14	83.5	557.5					
Point 15	158.5	557.5					
Point 16	300	557.5					
Point 17	334.5	557.5					
Point 18	145	566.5					
Point 19	65.5	575					
Point 20	133	575					
Point 21	73	580					
Point 22	126	580					
Point 23	86	586.5					
Point 24	117	586.5					
Point 25	90.5	589.5					
Point 26	113.5	589.5					
Point 27	153	589.5					
Point 28	161	587					
Point 29	166	584					
Point 30	230	575					
Point 31	280	570					
Point 32	99	593					
Point 33	129.5	593					
Point 34	184	575					
Point 35	240	570					
Point 36	8	586					
Point 37	52	583					
THE RESERVE THE PROPERTY OF TH		No. of the last of					

Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25
Point 46	93.5	591
Point 47	143.5	591

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	8886	2.96	(63.183, 681.319)	97.226	(103.836, 593)	(61, 584.118)

Slices of Slip Surface: 8886

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	8886	61.727275	584.10675	120.00338	11.266171	8.8020973	0
2	8886	63.18182	584.09585	120.00316	32.540073	2 5.423091	0
3	8886	64.636365	584.1067	- 119.99659	51.281082	40.065172	0
4	8886	66.09091	584.13935	- 119.99758	67.443836	52.692899	0
5	8886	67.545455	584.19375	- 119.99901	80.988344	63.275029	0
6	8886	69	584.27	120.00088	91.884465	71.788012	0
7	8886	70.454545	584.36815	_ 120.00293	100.12128	78.223315	0
8	8886	71.90909	584.48825	- 119.99808	105.68048	82.56664	0
9	8886	73.363635	584.6304	- 119.99978	108.56797	84.822598	0
10	8886	74.81818	584.79465	- 120.00068	108.81354	85.014456	0
11	8886	76.272725	584.9811	- 120.00054	106.44386	83.163054	0
12	8886	77.666665	585.18035	- 120.00335	111.73416	87.296296	0
13	8886	79	585.3907	- 119.99976	124.78022	97.48899	0
14	8886	80.333335	585.6201	- 120.00074	135.51114	105.8729	0
15	8886	81.666665	585.8687	- 119.99826	143.95815	112.47244	0
16	8886	83	586.1366	- 119.99927	150.15511	117.31403	0 .

 $file: ///F|/Philip\%20Sporn/PDF\%20Analysis\%20Files/AA\%20LEM/Shallow/bap_a-a_slope-ds_shallow.html [5/4/2010 3:10:12 PM] \\$

							A
17	8886	84.333335	586.424	120.00302	154.13064	120.42005	0
18	8886	85.866135	586.7804	119.99856	167.60056	130.94391	0
19	8886	87.299205	587.13335	-119.9974	184.59693	124.5122	0.1
20	8886	88.43307	587.43095	-120.0015	195.54538	131.89702	0.1
21	8886	89.75	587,79645	- 119.99887	200.18623	135.02732	0.1
22	8886	91.25	588.23565	- 119.99706	199.91	134.841	0.1
23	8886	92.75	588.70125	- 120.00025	198.89113	134.15376	0.1
24	8886	94.326995	589.22035	- 120.00027	208.75191	140.80494	0.1
25	8886	95.79499	589.72825	- 119.99888	228.61514	154.20286	0.1
26	8886	97.076995	590.1949	- 120.00161	245.39868	165.5235	0.1
27	8886	98.359	590.6821	120.00006	260.32494	175.59139	0.1
28	8886	99.087	590,96545	120.00239	264.01274	178.07884	0.1
29	8886	99.9509	591.3174	- 119.99943	216.71032	157.44926	0.1
30	8886	101.50475	591.968	120.00149	130.39937	94.740689	0.1
31	8886	103.0586	592.6506	- 120.00042	40.059422	29.104874	0.1

320 Pool Elevation = 583' 280 240 Crest Elevation = 593' 200 Distance (ft) Sand and Gravel (11) Clayey Sand (9) Sand (10) 160 Comments: LEM - Location A (Exterior Toe) 120 Down Stream Deep Failure Surface File Name: BAP_A-A_Slope-DS_Deep.gsz Date: 5/3/2010 Fly Ash (2) Title: Sporn Bottom Ash Disposal Facility Railway Induced Pseudo Static Analysis Clayey Sand (4) 3.08 80 Horz Seismic Load: 0.033 Vert Seismic Load: 0.008 40 009 560 540 520 500 580 Elevation (ft)

360

port generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: LEM - Location A (Exterior Toe) Railway Induced Pseudo Static Analysis Down Stream

Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 169 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 4:12:57 PM

File Name: BAP_A-A_Slope-DS_Deep.gsz

Directory: E:\Final Analysis Files\LEM BAP_A-A GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 4:13:12 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Bottom Ash Pond Section A-A Downstream Seismic Stability with Existing Piezo Levels

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine

PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

file:///P|/Frank/Philip%20Sporn/PDF%20Analysis%20Files/AA%20LEM/Deep/bap_a-a_slope-ds_deep.html (1 of 9) [5/4/2010 5:18:31 PM]

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 5 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

/laterials

Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36° Phi-B: 20°

Pore Water Pressure

Piezometric Line: 1

Add Weight: Yes

Tlayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 " Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Silty Clay (1)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf Phi: 29 °

Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Riprap (12)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (35, 584.5556) ft Left-Zone Right Coordinate: (61, 584.11765) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (98.5, 592.81818) ft Right-Zone Right Coordinate: (134.204, 592.328) ft

Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

Piezometric Lines

`iezometric Line 1

Coordinates

X (ft)	Y (ft)
1	570.5
107	570.5
168	583
334	583

Maximum Suction: 120 psf

Seismic Loads

Horz Seismic Load: 0.033 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
legion 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	[5834.125]
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	[680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22][273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Gravelly Sand (6)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	[80.5
Region 14	Clayey Sand (7)	46,40,25,26,27,47	85.5
Region 14	Clayey Sand (7)	46,40,25,26,27,47	85.5

'oints

*************	-
X (ft)	Y (ft)

Point 1	0	500
Point 2	335	500
Point 3	0	537
Point 4	335	537
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	27	586
Point 11	39	583
Point 12	51	575
Point 13	67	566.5
Point 14	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
' ['] oint 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580 [°]
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
oint 32	99	593

Point 33	129.5	593
Point 34	184	575
Point 35	240	570
Point 36	8	586
Point 37	52	583
Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25
Point 46	93.5	591
Point 47	143.5	591

Critical Slip Surfaces

Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1 8935	3.08	(79.139, 615.039)	35.849	(107.414, 593)	(61, 584.118)

Slices of Slip Surface: 8935

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	8935	61.676715	583.74005	-120.00057	63,268393	49.430686	0
2	8935	63.09019	582.99355	-120.00073	173.03503	135.18978	0.1
3	8935	64.56371	582,2966	-119.99908	244.0901	190.70409	0.1
4	8935	66.03723	581.67925	-119.99912	309.54554	241.84348	0.1
5	8935	67.51075	581.1372	-120.00295	368.52089	287.92007	0.1
6	8935	68.984275	580.6668	-120.00109	420.24464	328.33109	0.1
7	8935	70.4578	580.26515	-120.00008	464.13199	362.61965	0.1
	8935	71.93132	579.92995	-119.99952	499.8019	390.48804	0.1
9	8935	72.83404	579.74905	-119.99954	511.66111	307.43701	0.1

 $file: ///PI/Frank/Philip \% 20 Sporn/PDF \% 20 Analysis \% 20 Files/AA \% 20 LEM/Deep/bap_a-a_slope-ds_deep.html \ (8 of 9) \ [5/4/2010 5:18:31 PM]$

10	8935	73.666665	579.6164	-120.0013	536.26278	322.21918	[0.1
11	8935	75	579.4359	-120.00164	561.07546	337.12815	0.1
12	8935	76.333335	579.30605	-119.99809	577.22302	346.83058	0.1
1.3	8935	77.25	579.2405	-120.00098	588.32117	353.49903	0.1
14	8935	78.25	579.2087	-120.00304	603.41415	362.5678	0.1
15	8935	79.75	579,20285	-120.00256	617.63024	371.10969	0.1
16	8935	81.25	579.25985	-119.99803	622.66406	374.13431	0.1
17	8935	82.75	579.38005	-119.99973	619.4061	372.17673	0,1
18	8935	84.25	579.56405	-120.00111	608.75521	365.77703	0.1
19	 8935	85.5	579.76225	-120.00492	602.2389	361.86164	[0.1
20	8935	86.35891	579.9262	-120.00023	604.44967	363.19	0.1
21	8935	87.85891	580.2863	-119.99973	619.10255	483.69592	0.1
22	8935	89.75	580.80505	-120.0015	627.88581	490.55816	0.1
23	8935	91.25	581.3068	-120.00053	625.42706	488.63717	0.1
24	8935	92.75	581.88395	-120.00207	621.96572	485.93288	0.1
25	8935	94.1875	582.50985	-120.00008	627.10272	489.94634	[0.1
6	8935	95.5625	583.18235	-120.00279	640.59021	500.48393	0.1
27	8935	96.9375	583.9301	-120.00278	651.65106	509.12561	0.1
28	8935]98.3125	584.75875	-120.00302	660.35458	515.92554	0.1
29	8935	99.9174	585.84705	-119.99922	627.9034	490.5719	0.1
30	8935	101.70045	587.20155	-120.00011	540.22934	364.38929	[0.1
31	8935	103.43175	588.70155	-119.99827	407.58142	274.91714	0.1
32	8935	105.0159	590.25	-120.00127	276.84491	186.73425	[0.1
33	8935	106.3672	591.7395	-120.00238	128.48372	93.348884	0.1
34	8935	107.20695	592.7395	-120.00041	15.557807	11.303409	0.1

360 320 Pool Elevation = 583' 280 240 Crest Elevation = 593' 200 Distance (ft) Sand and Gravel (11) Clayey Sand (9) Sand (10) 160 120 Fly Ash (2) 80 4 009 0 580 260 540 520 200

Title: Sporn Bottom Ash Disposal Facility

Comments: LEM - Location B (Crest)

ceport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: LEM - Location B (Crest) Railway Induced Pseudo Static Analysis Up Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 171 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 4:20:21 PM

File Name: BAP_A-A_Slope-US_Shallow.gsz

Directory: E:\Final Analysis Files\LEM BAP_A-A GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 4:20:44 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Bottom Ash Pond Section A-A Downstream Seismic Stability with Existing Piezo Levels

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 5 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

Pore Water Pressure

Piezometric Line: 1
Add Weight: Yes

Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (1)

Model: Mohr-Coulomb

Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29° Phi-B: 15°

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure
Piezometric Line: 1

Add Weight: Yes

Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Riprap (12)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38° Phi-B: 0°

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (111, 593) ft

Left-Zone Right Coordinate: (145, 590.76316) ft

Left-Zone Increment: 15 Right Projection: Range

Right-Zone Left Coordinate: (184.69356, 575) ft Right-Zone Right Coordinate: (242, 570) ft

Right-Zone Increment: 30 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
1	570
107	570
168	583
334	583

Maximum Suction: 120 psf

Seismic Loads

Horz Seismic Load: 0.013 Vert Seismic Load: 0.002

Ignore seismic load in strength: No

Regions

4		•	
	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25

Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Gravelly Sand (6)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Clayey Sand (7)	46,40,25,26,27,47	85.5

Points

nts		
	X (ft)	Y (ft)
Point 1	0	500
Point 2	335	500
Point 3	0	537
Point 4	335	537
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	27	586
Point 11	39	583
Point 12	51.	575
Point 13	67	566.5
Point 1.4	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
Point 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
Point 32	99	593
Point 33	129.5	593
Point 34	1.84	575
Point 35	240	570
Point 36	8	586
Point 37	52	583
		1

Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585,25
Point 46	93.5	591
Point 47	143.5	591

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	1.4521	1.70	(180.119, 618.555)	44.785	(145, 590.763)	(190.542, 575)

Slices of Slip Surface: 14521

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	14521	145.51885	590.1316	- 120.00117	18.684997	12.60319	0.1
2.	14521	146.7339	588.7209	119.99814	91.506002	66.483002	0.1
3	14521	148.12635	587.23075	- 119.99966	160.54552	116.64314	0.1
4	14521	149.51885	585.86795	120.00143	224.63109	163.20404	0.1
5	14521	150.9113	584.617	- 119.99767	284.48892	206.6933	0.1
6	14521	152.30375	583.4659	120.00261	340.73808	247.56071	0.1
7	14521	153.86155	582.2902	120.00041	394,2038	286.40583	0.1
8	14521	155.58465	581.10205	- 44.645913	450.71182	327.4613	0.1
9	14521	157.20515	580.08565	36.637589	501.83044	337.98239	0.1
10	14521	158.7231	579.22075	107.57206	545.99128	318.53021	0.1
11	14521	160.24105	578.4319	173.96704	584.09716	297.97697	0.1
12	14521	161.83335	577.6831	238.91299	602.01999	263.81268	0.1
13	14521	163.5	576.9772	302.25081	598.37303	215.14539	0.1
14	14521	165.16665	576.3489	360.95191	587.16472	164.35323	0.1
15	14521	167	575.74725	420.18735	573.18918	111.16234	0.1
16	14521	168.72725	575.2495	483.62893	582.27091	71.667592	0.1
17	14521	170.1818	574.8927	505.89347	611.80356	76.948185	0.1
18	14521	171.63635	574.5869	524.97528	637.85765	82.013846	0.1
19	14521	173.0909	574.331	540.94389	659.79946	86.353622	0.1
20	14521	174.54545	574.1242	553.84827	676.93628	89.428671	0.1
21	14521	176	573.9658	563.73598	688,55653	90.68744	0.1
22	14521	177.45455	573.8553	570.63013	693.96881	89.610798	0.1

23	14521	178.9091	573.79235	574.56105	692.47242	85.667623	0.1
2.4	14521	180.36365	573.77665	575.53897	683.59862	78.509931	0.1
25	14521	181.8182	573.80825	573.56653	666.88926	67.802929	0.1
26	14521	183.27275	573.88725	568.63857	642.11438	53.3833	0.1
2.7	14521	184.8178	574.0249	560.04928	593.52163	24.319086	0.1
28	14521	186.45335	574.22805	547.36871	575.00498	20.078921	0.1
29	14521	188.0889	574,49285	530.84588	549.48493	13.542062	0.1
30	14521	189.72445	574.8204	510.407	517.1551	4.90278	0.1

360 320 Pool Elevation = 583' 280 240 2.02 -Crest Elevation = 593' 200 Distance (ft) Sand and Gravel (11) Clayey Sand (9) Sand (10) 160 120 Fly Ash (2) 80 4 009 540 260 520 200 580 Elevation (ft)

:port generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: LEM - Location B (Crest) Railway Induced Pseudo Static Analysis Up Stream Deep Failure

Surface

Created By: Seth W. Frank, E.I.

Revision Number: 170 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 4:24:31 PM

File Name: BAP_A-A_Slope-US_Deep.gsz

Directory: E:\Final Analysis Files\LEM BAP_A-A GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 4:24:58 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Bottom Ash Pond Section A-A Downstream Seismic Stability with Existing Piezo Levels

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine

PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

file:///P|/Frank/Philip%20Sporn/PDF%20Analysis%20Files/AA%20LEM/Deep/bap_a-a_slope-us_deep.html (1 of 9) [5/4/2010 5:19:44 PM]

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.05

Minimum Slip Surface Depth: 10 ft

Optimization Maximum Iterations: 2000

Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 °

Resisting Side Maximum Convex Angle: 1 °

/laterials

Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

Add Weight: Yes

"layey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

(8) Acad Material

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Silty Clay (1)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Riprap (12)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (99.45937, 593) ft Left-Zone Right Coordinate: (129.5, 593) ft

Left-Zone Increment: 15 Right Projection: Range

Right-Zone Left Coordinate: (184.69356, 575) ft

Right-Zone Right Coordinate: (277, 570) ft

Right-Zone Increment: 30 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

Piezometric Lines

[~]iezometric Line 1

Coordinates

X (ft)	Y (ft)
1	570
107	570
168	
334	583

Maximum Suction: 120 psf

Seismic Loads

Horz Seismic Load: 0.013 Vert Seismic Load: 0.002

Ignore seismic load in strength: No

Regions

Carlo B			
	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
legion 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	[680]
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Gravelly Sand (6)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Clayey Sand (7)	46,40,25,26,27,47	85.5

'oints

Section Action of Contraction Contractions of the	Service advantage and an analysis of
X (ft)	Y (ft)

Point 1		[500
Point 2	335	500
Point 3		[537
Point 4] [335	537
Point 5] [335	512
Point 6	lo	512
Point 7	0	545
Point 8	335	545
Point 9	lo	589
Point 10	27	586
Point 11	39	583
Point 12	51	575
Point 13	67	566.5
Point 14	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
(New Process and Process of Section 2015)		
oint 17	334.5	557.5
oint 17 Point 18	334.5 145	557.5 566.5
	***************************************	tenesconomicamora
Point 18	145	566.5
Point 18 Point 19	145 65.5	566.5 575
Point 18 Point 19 Point 20	145 65.5 133	566.5 575 575
Point 18 Point 19 Point 20 Point 21	145 65.5 133 73	566.5 575 575 580
Point 18 Point 19 Point 20 Point 21 Point 22	145 65.5 133 73 126	566.5 575 575 580 580
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23	145 65.5 133 73 126	566.5 575 575 580 580 586.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24	145 65.5 133 73 126 86 117	566.5 575 575 580 580 586.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25	145 65.5 133 73 126 86 117	566.5 575 575 580 580 586.5 586.5 589.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25 Point 26	145 65.5 133 73 126 86 117 90.5	566.5 575 575 580 586.5 586.5 589.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25 Point 26 Point 27	145 65.5 133 73 126 86 117 90.5 113.5	566.5 575 575 580 586.5 586.5 589.5 589.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25 Point 26 Point 27 Point 28	145 65.5 133 73 126 86 117 90.5 113.5 153 161	566.5 575 580 580 586.5 586.5 589.5 589.5 589.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25 Point 26 Point 27 Point 28 Point 29	145 65.5 133 73 126 86 117 90.5 113.5 153 161	566.5 575 575 580 580 586.5 586.5 589.5 589.5 589.5 589.5
Point 18 Point 19 Point 20 Point 21 Point 22 Point 23 Point 24 Point 25 Point 26 Point 27 Point 28 Point 29 Point 30	145 65.5 133 73 126 86 117 90.5 113.5 153 161 166 230	566.5 575 575 580 580 586.5 586.5 589.5 589.5 589.5 589.5 589.5

Point 33	129.5	593
Point 34	184	575
Point 35	240	570
Point 36	8	586
Point 37	52	583
Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25
Point 46	93.5	591
Point 47	143.5	591

Pritical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	14583	2.02	(177.569, 633.864)	63.092	(129.5, 593)	(200.275, 575)

Slices of Slip Surface: 14583

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	14583	130.3873	592	-120.00172	72.537349	52.701469	0.1
2	14583	131.9923	590.25	-120.00096	216.3283	145.91528	0.1
3	14583	133.789	588.4596	-119.99908	305.76698	222.15272	0.1
4	14583	135.947	586.4716	-119.99968	396.64481	288.17933	0.1
5	14583	138.105	584.6586	-120.00062	479.73498	348.54787	0.1
6	14583	140.263	583.0018	-120	555.9645	403.93186	0.1
7	14583	142.421	581.4863	-119.99918	626.08437	454.87692	0.1
Accordance of the Control of the Con	14583	144.42355	580.19185	-120.00133	689.59767	501.02204	0.1
9	14583	1.46.2707	579.09375	-43.250596	752.63389	546.82053	0.1

file:///P|/Frank/Philip%20Sporn/PDF%20Analysis%20Files/AA%20LEM/Deep/bap_a-a_slope-us_deep.html (8 of 9) [5/4/2010 5:19:44 PM]

10	14583	148.6457	577.817	63.172602	830.15827	557.24771	0.1
11	14583	151.54855	576.41065	184.04323	916.46617	532.13642	0.1
12	14583	154.33335	575.22495	290.23947	976.9592	498.93109	0.1
13	14583	157	574.23665	383.14394	1012.8074	457.47728	0.1
14	14583	159.66665	573.38205	468.09944	1037.672	413.81867	0.1
15	14583	162.25	572.67445	543.19547	1024.6562	349.80173	0.1
16	14583	1.64.75	572.10205	609.13733	972.63014	264.09298	0.1
[17	14583	167	571.67265	663.38834	923.50873	188.98853	0.1
18	14583	169.14285	571.34865	727.02551	914.41841	136.14892	[0.1
19	14583	171.42855	571.0828	743.61388	933.15313	137,70832	0.1
20	14583	173.71425	570.90105	754.98014	944.10728	137.40891	0.1
21	14583	176	570.80265	761.10184	946.41322	134.63659	0.1
22	14583	178.28575	570.7872	762.07575	939.20805	128.69415	0.1
23	14583	180.57145	570.85465	757.85286	921.59837	118.96808	0.1
24	14583	182.85715	571.00525	748.45627	892.88984	104.93713	0.1
25	14583	185.1625	571.24235	733.69385	835.01816	73.616416	0.1
`6	14583	187.48745	571.56835	713.35184	809.56131	69.900275	
27	14583	189.8124	571.9834	687.41949	774.50725	63.272963	0.1
28	14583	192.13735	572.48935	655.85488	729.75992	53,695152	0.1
29	14583	194.4623	573.0884	618.4998	675.31475	41.278482	0.1
30	14583	196.78725	573.78335	575.13338	611.34806	26.311506	0.1
31	14583	199.1122	574.5776	525.57154	538.14386	9.134326	0.1

FLY ASH DISPOSAL FACILITY SECTION H-H LEM SLOPE STABILITY ANALYSIS RESULTS

Title: Sporn Fly Ash Disposal Facility
Comments: LEM - Location C (Exterior Toe)
Railway Induced Pseudo Static Analysis
Down Stream Shallow Failure Surface
File Name: FAP_H-H_Slope-DS_Shallow.gsz
Date: 5/3/2010
Horz Seismic Load: 0.046
Vert Seismic Load: 0.008

eport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility

Comments: LEM - Location C (Exterior Toe) Railway Induced Pseudo Static Analysis Down Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 172 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 3:17:51 PM

File Name: FAP_H-H_Slope-DS_Shallow.gsz

Directory: E:\Final Analysis Files\LEM FAP_H-H GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 3:18:12 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Fly Ash Pond Section H-H Downstream Seismic Stability

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine
PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 1 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

Pore Water Pressure Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

Pore Water Pressure
Piezometric Line: 1
Add Weight: Yes

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 "

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (33, 590.06452) ft Left-Zone Right Coordinate: (78, 592.34198) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (126, 610.18182) ft Right-Zone Right Coordinate: (146.73585, 611) ft

Right-Zone Increment: 20 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
1.35	589
146	605
309	605

Seismic Loads

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

Regions

THE COLUMN TWO IS A SECOND TO SECOND THE COLUMN TWO IS A SECOND TO SECOND THE COLUMN TWO IS A SECOND TWO IS A SECOND	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	3:1.0	555
Point 3	0	576
Point 4	2.18	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	1.70	600
Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589

Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	107	600
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

Critical Slip Surfaces

-	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
-	1 13115	1.84	(20.316, 828.893)	243.483	(128.974, 611)	(78, 592.342)

Slices of Slip Surface: 13115

3 - 1	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	13115	78.51852	592.46965	216.50769	5.3842747	4.2066564	0
2	13115	79.555555	592.72735	- 232.58337	15.904935	12.426297	0
3	13115	80.59259	592.9899	-248.9737	25.926002	20.255613	0
4	13115	81.62963	593.2573	265.65718	35.439622	27.688467	0
5	13115	82.66667	593.52955	-282.6505	44.435682	34.71696	0
6	13115	83.703705	593.80675	- 299.94209	52.906969	41.335455	0
7	13115	84.74074	594.08885	- · 317.53899	60.844514	47.536944	0
8	13115	85.77778	594.37585	- 335.45715	68.243118	53.317367	0
9	13115	86.814815	594.6678	- 353.66625	75.094015	58.669874	0
10	13115	87.85185	594.9647	372.20097	81.392268	63.590609	0
11	13115	88.88889	595.2666	391.03985	87.132038	68.075009	0
12	13115	89.925925	595.5735	- 410.18955	92.310436	72.120817	0
13	13115	90.96296	595.8854	- 429.64781	96.921991	75.723758	0
14	13115	92	596.20235	- 449.42961	100.97398	78.889522	0
15	13115	93.03704	596.52435	- 469.52288	104.4509	81.605984	0

 $file: ///F[/Philip\%20Sporn/PDF\%20Analysis\%20Files/HH\%20LEM/Shallow/fap_h-h_slope-ds_shallow.html[5/4/2010~3:10:15~PM]$

		•					
16	13115	94.074075	596.85145	- 489.93399	107.36404	83.881977	0
17	13115	95.11111	597.18365	510.66001	109.70638	85.712015	0
18	13115	96.14815	597,52095	- 531.70667	111.48925	87.104947	0
19	13115	97.185185	597.86345	553.08056	112.71505	88.06265	0
20	131.15	98.22222	598.2111	-574.7684	113.37682	88.57968	0
21	13115	99.25926	598.5639	596.78524	113.49528	88.672234	0
22	13115	100.29629	598.92195	- 619.12777	113.05471	88.328019	0
23	13115	101.33335	599.28525	- 641.80173	112.07592	87.563304	0
24	13115	102.3704	599.6538	- 664.79402	110.56144	86.380065	0
25	13115	103.4074	600.02765	- 688.12836	108.51398	84.780412	0
26	13115	104.44445	600.4068	- 711.78238	105.94526	82.773508	0
27	13115	105.4815	600.7913	- 735.77955	102.84906	80.354491	0
28	13115	106.5	601.17415	- 759.66379	102.51369	80.092476	0
29	13115	107.5	601.55515	783.44447	104.93794	81.986502	0
30	13115	108.5	601.9412	- 807.53256	106.84764	83.478529	0
31	13115	109.5	602.3323	- 831.93448	108.26398	84.585091	0
32	13115	110.5	602.7285	- 856.65507	109.17069	85.293492	0
33	13115	111.5	603.1298	881.70061	109.59829	85.627567	0
34	13115	112.5	603.53625	 907.06478	109.53046	85.574578	0
35	13115	113.5	603.94795	- 932.73602	108.9701	85.136774	· 0
36	13115	114.5	604.3648	-958,7649	107.93828	84.330628	0
37	13115	115.5	604.7869	- 985.12691	106.40991	83.13653	0
38	13115	116.5	605.2143	1011.7268	104.41557	81.578382	0
39	13115	117.5	605.64695	- 1038.7441	101.9306	79.636915	0
40	13115	118.5	606.08495	- 1066.0805	98.967046	77.32153	0
41	13115	119.5	606.5283	- 1093.7316	95.509728	74.620377	0
42	13115	120.5	606.977	- 1121.7839	91.580149	71.550254	0
1		1					

 $file: ///F|/Philip\%20Sporn/PDF\%20Analysis\%20Files/HH\%20LEM/Shallow/fap_h-h_slope-ds_shallow.html [5/4/2010~3:10:15~PM]$

43	13115	121.5	607.43115	- 1150.1404	87.156902	68.094435	0
44	13115	122.5	607.8908	- 1178.7953	82.240646	64.253435	0
45	13115	1.23.5	608.35595	- 1207.8356	76.825951	60.023011	0
46	13115	124.5	608.8266	1237,1622	70.907255	55.398819	0
47	13115	125.5	609.3028	- 1266.8628	64.478599	50.376203	0
48	13115	126.5	609.7846	- 1296.9296	57.533026	44.949726	0
49	13115	127.5	610.27205	- 1327.3558	50.061147	39.112054	0
50	13115	128.4868	610.7586	- 1357.7005	23.09149	18.041049	0

Title: Sporn Fly Ash Disposal Facility
Comments: LEM - Location C (Exterior Toe)
Railway Induced Pseudo Static Analysis
Down Stream Deep Failure Surface
File Name: FAP_H-H_Slope-DS_Deep.gsz
Date: 5/4/2010
Horz Seismic Load: 0.008

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility

Comments: LEM - Location C (Exterior Toe) Railway Induced Pseudo Static Analysis Down Stream

Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 174 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 8:59:09 PM

File Name: FAP_H-H_Slope-DS_Deep.gsz

Directory: P:\Frank\Philip Sporn\Final Analysis Files\LEM FAP_H-H GA\Deep\

Last Solved Date: 5/4/2010 Last Solved Time: 8:59:49 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Fly Ash Pond Section H-H Downstream Seismic Stability

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: Yes

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with B-bar

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 5 ft

Optimization Maximum Iterations: 2000

Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (31, 590) ft

Left-Zone Right Coordinate: (74, 590.96226) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (128, 611) ft Right-Zone Right Coordinate: (159, 608) ft

Right-Zone Increment: 20 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

Seismic Loads

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

Points

	X (ft)	Y (ft)	
Point 1	0	555	
Point 2	310	555	
Point 3	0	576	
Point 4	218	576	
Point 5	248	561	
Point 6	310	561	
Point 7	0	586	
Point 8	199	586	
Point 9	0	590	
Point 10	76	591	
Point 11	82	592	
Point 12	137	591	
Point 13	139	591	

Point 14	1.89	591	
Point 15	106	602	
Point 16	137	602	
Point 17	137	610	
Point 18	145	610	
Point 19	145	602	
Point 20	145	597	
Point 21	149	610	
Point 22	167	602	
Point 23	148	600	
Point 24	170	600	
Point 25	128	611	
Point 26	147	611	
Point 27	154	608	
Point 28	159	608	
Point 29	193	589	
Point 30	201	588	
Point 31	310	588	
Point 32	49.5	590.5	
Point 33	46.5	590.5	
Point 34	31	590	
Point 35	15.5	592	
Point 36	0	593	
Point 37	91	592	
Point 38	107	600	
Point 39	109	602	
Point 40	130	611	
Point 41	128	610	
Point 42	74	590.96226	

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	3707	2.15	(87.752, 644.982)	71.424	(149.834 <i>,</i> 609.666)	(41.7475, 590.347)

Slices of Slip Surface: 3707

	Slip Surfac e	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesiv e Strengt h (psf)
1	3707	42.57181	589.67335	-42.016937	128.22302	86.487516	0.1
2	3707	44.94805	587.8375	72.540509	438.92526	247.12963	0.1
3	3707	46.98552	586.3375	166.14085	692.50159	355.0348	0.1
4	3707	48.48552	585.3322	228.87329	841.29336	367.9791	0.1
5	3707	50.59632	583.99645	312.22469	1067.9864	454.10746	0.1
6	3707	52.788965	582.7129	392.31539	1291.0025	539.98568	0.1
7	3707	54.98161	581.5311	466.03999	1496.9524	619.43465	0.1
8	3707	57.174255	580.44545	533.8145	1685.0684	691.74313	0.1
9	3707	59.3669	579.4511	595.85538	1854.7767	756.43623	0.1
10	3707	61.55954	578.544	652,46999	2005.6515	813.07349	0.1
11	3707	63.752185	577.7206	703.85237	2137.5016	861.42338	0.1
12	3707	65.94483	576.97785	750.18761	2250.3891	901.41201	0.1
13	3707	68.13747	576.31315	791.68019	2344.4311	932.98687	0.1.
14	3707	70.425345	575.702	829.79748	2385.9527	792.90069	0.1
15	3707	72.80845	575.149	864.32154	2447.215	806.5245	0.1
16	3707	75	574.71255	891.5385	2530,2731	834.97696	0.1
17	3707	77	574.3788	912.38071	2636.0081	878.23204	0.1
18	3707	79	574.103	929.58977	2725.7976	915.21359	0.1
19	3707	81	573.88455	943.20604	2801.9924	947.09897	0.1
20	3707	83.125	573.71655	953.68065	2870.1339	976.48171	0.1
2.1	3707	85.375	573.60605	960.57874	2929.0877	1003.0054	0.1
22	3707	87.625	573.5666	963.06495	2973.4614	1024.3481	0.1
23	3707	89.875	573.59805	961.0861	3004.4047	1041.1228	0.1
24	3707	92.07143	573.6964	954.962	3018.3246	1051.3358	0.1
25	3707	94.214285	573.85865	944.84134	3016.9858	1055.8103	0.1
26	3707	96.35714	574.08605	930.61007	3006.4616	1057.6992	0.1
27	3707	98.5	574.3792	912.32289	2987.4365	1057.3232	0.1
2.8	3707	100.64287	574.73895	889.91216	2960.6975	1055.1179	0.1
29	3707	102.7857	575.1663	863.23977	2926.8126	1051.4429	0.1
30	3707	104.92855	575.6625	832,23791	2886.3114	1046.6027	0.1
31	3707	106.1352	575.964	813.43608	2862.6603	1044.1319	0.1

32	3707	106.6352	576.1	804.96132	2852.9756	1230.5711	0.1
33	3707	108	576.49565	780.26331	2823.0064	1227.4039	0.1
34	3707	110.05555	577.1383	740.19075	2775.9066	1223.1815	0.1
35	3707	112.16665	577.8693	694.5582	2725.2162	1220.1424	0.1
36	3707	114.27775	578.6756	644.25928	2668.559	1216.322	0.1
37	3707	116.38885	579.55995	589.06462	2605.857	1211.8111	0.1
38	3707	118.5	580.5255	528.81257	2536.9664	1206.6206	0,1
39	3707	120.61115	581.57605	463.25152	2461.5625	1200.7064	0.1
40	3707	122.72225	582.7159	392.12844	2379.203	1193.9549	0.1
41	3707	124.83335	583.95005	315.11755	2289.1474	1186.1168	0.1
42	3707	126.94445	585.2844	231.85487	2190.6886	1176.986	0.1
43	3707	129	586.68495	144.46122	2027.551	1270.1601	0.1
44	3707	131.05405	588.19625	50.156728	1846.0709	1211.3594	0.1
45	3707	133.31485	590	-62.400122	1639.1079	1105.5922	0.1
46	3707	134.7608	591.20915	-137.84979	1500.7346	1050.8256	0.1
47	3707	136	592.3347	-37.654405	1411.3675	988.25014	0.1
48	3707	138.51345	594.7815	-13.438985	1339.6938	837.1336	0.1
49	3707	141.2702	597.71975	8.0222125	1087.6773	674.64338	0.1
50	3707	143.75675	600.7	20.770424	841.01883	512.54809	0.1
51	3707	1.45.5	602.9595	26.301049	601.80565	373.73706	0.1
52	3707	146.4686	604.3233	42.226639	503.96304	299.85512	0.1
53	3707	146.9686	605.0466	-2.9065669	436.09629	283.20424	0.1
54	3707	148	606.66555	-103.92901	260.873	169.4129	0.1
55	3707	149.41725	608.95205	-246.60938	21.756806	14.129035	0.1
enconcerno e com en cio e come	TALES AND DESCRIPTION OF THE PARTY OF THE PA		······		······································		WALL TO SEE STATE OF THE PARTY

Title: Sporn Fly Ash Disposal Facility
Comments: LEM - Location D (Crest)
Railway Induced Pseudo Static Analysis
Up Stream Shallow Failure Surface
File Name: FAP_H-H_Slope-US_Shallow.gsz
Date: 5/3/2010
Horz Seismic Load: 0.01

Vert Seismic Load: 0.003

Report generated using GeoStudio 2007, version 7.15. Copyright @ 1991-2009 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility

Comments: LEM - Location D (Crest) Railway Induced Pseudo Static Analysis Up Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 177 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 3:19:19 PM

File Name: FAP_H-H_Slope-US_Shallow.gsz

Directory: E:\Final Analysis Files\LEM FAP_H-H GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 3:19:42 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Fly Ash Pond Section H-H Downstream Seismic Stability

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine

PWP Conditions Source: Piezometric Line with B-bar

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 2 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 $^{\circ}$ Resisting Side Maximum Convex Angle: 1 $^{\circ}$

Materials

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1
Add Weight: Yes

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1
Add Weight: Yes

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27° Phi-B: 15°

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (128.79943, 611) ft Left-Zone Right Coordinate: (147, 611) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (196.12179, 588.60978) ft

Right-Zone Right Coordinate: (255, 588) ft

Right-Zone Increment: 20 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

Seismic Loads

Horz Seismic Load: 0.01 Vert Seismic Load: 0.003

Ignore seismic load in strength: No

Regions

The second secon	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	1.9
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	1.70	600
Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589
	10 mm 10 mm	

Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590,5
Point 34	31	590
Point 35	15.5	592
Point 36	0 .	593
Point 37	91	592
Point 38	107	600
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	13028	1.40	(204.098, 671.188)	82.963	(147, 611)	(196.122, 588.61)

Slices of Slip Surface: 13028

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	13028	147.5365	610.5	343.19715	-30.175059	-20.353334	0.1
2	13028	148.5365	609.58195	- 285.91432	14.03658	9.1154618	0.1
3	13028	149.5	608.72685	232.55814	51.277534	33.30002	0.1
4	13028	150.5	607.8666	178.87401	94.005221	61.047704	0.1
5	13028	151.5	607.03345	- 126.88622	133.96983	87.001023	0.1
6	13028	152.5	606.22635	- 76.524084	171.36208	111.28384	0.1
7	13028	153.5	605.4444	- 27.730185	206.35975	134.01159	0.1
8	13028	154.03935	605.0298	- 1.8588825	225.75979	146.61012	0.1
9	13028	154.60865	604.6061	24.578507	265.20888	156.26719	0.1
10	13028	155.6685	603.8312	72.931996	337.71708	171.95344	0.1
11	13028	156.72835	603.08165	119.70686	407.60287	186.96185	0.1
12	13028	157.7882	602.35655	164.9538	475.17277	201.45856	0.1
13	13028	158.65905	601,7768	201.12602	525.40369	227.06167	0.1
14	13028	159.41575	601.28785	231.64015	547.73509	221.33205	0.1
15	13028	160.2473	600.7632	264.38225	548.97753	199.27576	0.1
16	13028	161.07885	600.25215	296.26437	548.61144	176.69532	0.1
17	13028	161.87095	599.77745	325.89129	546.85741	154.72214	0.1
18	13028	162.62365	599.33765	353.32741	543.91963	133.45411	0.1
19	13028	163.5	598.83985	384.39468	558.50512	121.91344	0.1

20	13028	164.5	598.2877	418.84849	591.13305	120.63495	0.1
2.1	13028	165.5	597.7533	452.19169	623.0836	119.6598	0.1
22	13028	166.5	597.2363	484.45297	654.31058	118.93558	0.1
23	13028	167.5	596.7363	515.65617	682.01337	116.48457	0.1
24	13028	168.5	596.253	545.8124	712.06628	116.41222	0.1
25	13028	169.5	595.78605	574.95324	741.11608	116.34847	0.1
26	13028	170.49315	595.3381	602.90384	758.95063	109.26514	0.1
27	13028	171.47945	594.90875	629.69665	790.25307	112.42282	0.1
28	13028	172.46575	594.4945	655.5461	820.50816	115.50768	0.1
29	13028	173.45205	594.09505	680.46939	849.63515	118.45114	0.1
30	13028	174.4384	593.7102	704.47954	877.53867	121.17731	0.1
31	13028	1.75.42475	593.33975	727.59845	904.1203	123.60193	0.1
32	13028	176.41105	592.9835	749.82319	929.25547	125.63984	0.1
33	13028	177.39735	592.6413	771.17943	952.81749	127.18434	0.1
34	13028	178.38365	592.3129	791.67807	974.6444	128.1144	0.1
35	13028	179.36995	591.9981	811.31851	994.69554	128.40198	0.1
36	13028	180.35625	591.6968	830.11371	1012.7603	127.89051	0.1
37	13028	181.34255	591.40885	848.08741	1028.7145	126.47645	0.1
38	13028	182.3289	591.1341	865.23325	1042.432	124.07591	0.1
39	13028	183.3369	590.86695	881.90188	1.056.4205	117.71428	0.1
40	13028	184.36655	590.6078	898.07627	1069.9223	115.9116	0.1
41	13028	185.3962	590.3626	913.37461	1080.3691	112.63923	0.1
42	13028	186.42585	590.13125	927.81285	1087.7322	107.86693	0.1
43	13028	187.4555	589.91355	941.39799	1091.9848	101.57205	0.1
44	13028	188.48515	589.70945	954.12967	1092.9139	93.611146	0.1
45	13028	189.5	589.52145	965.86015	1087.9548	82.3539	0.1
46	13028	190.5	589.349	976.62053	1072.2988	64.535795	0.1
47	13028	191.5	589.1891	986.60417	1053.44	45.081327	0.1
48	13028	192.5	589.0417	995.82342	1031.5689	24.110628	0.1
49	1.3028	193.0395	588.9658	1000.5375	1001.8541	0.88805506	0.1
50	13028	193.58615	588.8957	1004.8988	1006.0724	0.59798134	0.1
51	13028	194.6004	588.77245	1012.5734	1013.9447	0.69868901	0.1
52	13028	195.61465	588.6619	1019.5225	1020.1109	0.29983991	0.1

Title: Sporn Fly Ash Disposal Facility Comments: LEM - Location D (Crest) Railway Induced Pseudo Static Analysis

Up Stream Deep Failure Surface File Name: FAP_H-H_Slope-US_Deep.gsz Date: 5/4/2010 Horz Seismic Load: 0.01 Vert Seismic Load: 0.003

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility

Comments: LEM - Location D (Crest) Railway Induced Pseudo Static Analysis Up Stream Deep

Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 179 Last Edited By: Jeff Gateley

Date: 5/4/2010 Time: 2:51:09 PM

File Name: FAP_H-H_Slope-US_Deep.gsz

Directory: P:\Frank\Philip Sporn\Final Analysis Files\LEM FAP_H-H GA\Deep\

Last Solved Date: 5/4/2010 Last Solved Time: 2:54:56 PM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Fly Ash Pond Section H-H Downstream Seismic Stability

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line with B-bar

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 15 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35° Phi-B: 18°

Pore Water Pressure
Piezometric Line: 1

Add Weight: Yes

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: Yes

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

Pore Water Pressure

Piezometric Line: 1

B-bar: 0

Add Weight: Yes

Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1 Add Weight: No

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (128.79943, 611) ft Left-Zone Right Coordinate: (147, 611) ft

Left-Zone Increment: 20 Right Projection: Range

Right-Zone Left Coordinate: (203, 588) ft Right-Zone Right Coordinate: (264, 588) ft

Right-Zone Increment: 20 Radius Increments: 30

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
135	589
 146	605
309	605

Seismic Loads

Horz Seismic Load: 0.01 Vert Seismic Load: 0.003

Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	. 0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	139	591

Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	170	600
Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589
Point 30	201	588
Point 31	310	588
Paint 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	107	600
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226
E	······	

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	8510	1.65	(187.536, 639.88)	55.084	, ,	(206.05, 588)

Slices of Slip Surface: 8510

	Slip Surfac e	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesiv e Strengt h (psf)
1	8510	140.9451	610.5	-802.00234	-113.56639	-76.601495	0.1
2	8510	141.88365	609.07625	-627.95384	39.013006	24.378032	0.1
3	8510	143,1302	607.30295	-404.17672	219.3324	137.05409	0.1
4	8510	144.37675	605.6671	-188.96038	387.13008	241.90572	0.1
5	8510	145.25175	604.5793	-41.663951	457.33477	296.99667	0.1
6	8510	145.75175	603.98875	40.570403	522.49304	312.96422	0.1
7	8510	146.5	603.1412	115.98706	613.18593	322.88472	0.1
8	8510	147.272	602.29135	169.01833	684.56624	334.80073	0.1
9	8510	148.272	601.25985	233.38425	732.56457	349.52982	0.1
10	8510	149.269	600.25985	295,78462	792.31508	347.67437	0.1
11	8510	150.2817	599.317	354.62166	856.026	351.0871	0.1
1.2	8510	151.76905	597.9989	436.87104	942.98866	354.38737	0.1
13	8510	153.25635	596.7724	513.4041	1021.009	355,42881	0.1
14	8510	154.625	595.71525	579.3671	1105.5175	368.41445	0.1
15	8510	155.875	594.81045	635.82691	1199.188	394,46969	0.1
1.6	8510	157.125	593.9575	689.07879	1289.1796	420.19514	0.1
17	8510	158.375	593.15355	739.21397	1375.88	445.79834	0.1
18	8510	159.7847	592.30575	792.13196	1420.906	440.2723	0.1
19	8510	161.35405	591.424	847.11604	1421.3902	402.11109	0,1
20	8510	162.56935	590.781	887.26565	1423.0777	361.40978	0.1
21	8510	163.66665	590.24145	920.92981	1448.6141	355.92758	0.1
22	8510	165	589.62195	959.59071	1497.1449	362.58489	0.1
23	8510	166.33335	589.04495	995.59413	1542.1568	368.66119	0.1
24	8510	167.75	588.4782	1030.9868	1585.1477	373.78623	0.1
25	8510	169.25	587.9255	1065.4635	1629.0404	380.13742	0.1
26	8510	170.60805	587.46515	1094.2077	1661.7746	382.82872	0.1
27	8510	171.8241	587.0878	1117.6896	1698.4847	391.75122	0.1
28	8510	173.04015	586.74095	1139.3909	1731.9345	399.67569	0.1
29	8510	174.2562	586.42405	1159.114	1761.9746	406.63461	0.1
30	8510	175.47225	586.1365	1177.0624	1788.5412	412.44761	0,1
31	8510	176.7263	585.8707	1193.6909	1813.7605	372.57541	0.1

32	8510	178.01825	585.62805	1208.8111	1833.3432	375.25674	0.1
33	8510	179.3102	585.41715	1222.0051	1848.1995	376.25555	0.1
34	8510	180.6022	585.23765	1233.1734	1858.2066	375.55778	0.1
35	8510	181.8942	585.08915	1242.4536	1863.103	372.92375	0.1
36	8510	183.18615	584.97145	1249.7512	1862.5513	368.20747	0.1
37	8510	184.4781	584.88435	1255.2117	1856.3872	361.22266	0.1
38	8510	185.7701	584.8277	1258.7476	1844.3736	351.87956	0.1
39	8510	187.06205	584.8014	1260.3549	1826.2144	340.00265	0.1
40	8510	188.354	584.8054	1260.1075	1801.7788	325.46896	0.1
41	8510	189.66665	584.8408	1257.9328	1765.3028	304.85864	0.1
42	8510	191	584,9086	1253.6883	1711.4803	275.06917	0.1
43	8510	192.33335	585.0089	1247.4419	1650.0812	241.93006	0.1
44	8510	193.59925	585.13355	1239.6965	1561.2314	193.19764	0.1
45	8510	194,7977	585,2796	1230.517	1510.9958	168.52867	0.1
46	8510	195.99615	585.45245	1219.7787	1455.4233	141.58961	0.1
47	8510	197.1946	585.65235	1207.3312	1394.5468	112.49049	0.1
48	8510	198.39305	585.87955	1193.1114	1328.3335	81.249589	0.1
49	8510	199.49555	586.11195	1178.6463	1277.5618	50.399973	0.1
50	8510	200,4994	586.3451	1164.0753	1247.5633	42.539267	0.1
51	8510	201.63125	586.6334	1146.1081	1209.2788	32.187085	0.1
52	8510	202.89375	586.9838	1124.1912	1171.5808	24.146215	0.1
53	8510	204.15625	587.36685	1100.3434	1130.0212	15.121585	0.1
54	8510	205.41875	587.7833	1074.3126	1084.5763	5.229594	0.1

FLY ASH DISPOSAL FACILITY SECTION H-H LEM SLOPE STABILITY ANALYSES FOR SHALLOW SLOUGHING ASSESSMENT

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H Comments: Shallow Sloughing Assessment Moist Topsoil Material (Condition 1) File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 1.gsz Date: 5/4/2010

Horz Seismic Load: 0 Vert Seismic Load: 0

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment Moist Topsoil Material (Condition 1)

Created By: Roger W. Cecil, P.E.

Revision Number: 183 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 9:02:42 AM

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 1.gsz

Directory: C:\Working Folder\Sporn\VIBRATION ASSESSMENT\

Last Solved Date: 5/4/2010 Last Solved Time: 9:02:50 AM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Shallow Sloughing Assessment

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 0.5 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 " Phi-B: 0 "

Pore Water Pressure Piezometric Line: 1

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 " Phi-B: 0 "

Pore Water Pressure Piezometric Line: 1

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Topsoil

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0 psf

Phi: 27 ° Phi-B: 0 °

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (74, 591) ft

Left-Zone Right Coordinate: (96.98653, 598.24439) ft

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (105.97741, 601.99059) ft

Right-Zone Right Coordinate: (128, 611) ft

Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

Seismic Loads

Horz Seismic Load: 0 Vert Seismic Load: 0

Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085

Region 3	Silty Sand (1)	7,9,36,35,34,33,32,10,41,12,13,14,42,8	974
Region 4	Silty Sand (2)	40,39,16,12,41	467
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	38,17,16,39	152
Region 7	Silty Sand (2)	19,20,24,25,23	51.5
Region 8	Silty Sand (1)	37,27,22,18,37,38	19
Region 9	Silty Sand (2)	13,20,24,25,14	324
Region 10	Gravelly Sand (3)	22,28,29,23,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,42	2405.5
Region 12	Topsoil	38,21,26,37	2
Region 13	Topsoil	21,38,39,15	1.6
Region 14	Topsoil	39,40,41,10,11,15	22

Points

PYTHE RESIDENCE AND ADDRESS OF THE PROPERTY OF THE PERSON	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	74	591
Point 11	82	592
Point 12	137	591
Point 1.3	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597

Point 21	126	610
Point 22	149	610
Point 23	167	602
Point 24	148	600
Point 25	170	600
Point 26	128	611
Point 27	147	611
Point 28	154	608
Point 29	159	608
Point 30	214	588
Point 31	310	588
Point 32	49,5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593 ·
Point 37	130	611
Point 38	128	610
Point 39	108	602
Point 40	84	592
Point 41	76	591
Point 42	193	589
	······································	

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1.	496	1.23	(19.266, 782.232)	200.189	(108.187, 602.875)	(83.5294, 592.637)

Slices of Slip Surface: 496

Slip Surfa e	[X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesiv e Strengt h (psf)
496		83.773605	592.72035	0	2.1243523	1.0824116	0.
496		84.2621	592.88735	0	6.2940586	3.206983	0

. 3	496	84.750595	593.05575	0	10.305439	5.2508836	0
4	496	85.239085	593.22555	0	14.156294	7.2129921	0
5	496	85.727575	593.39675	0	17.844633	9.0922945	0
6	496	86.216065	593.5694	0	21 .368284	10.887685	0
7	496	86.70456	593.7435	0	24,725481	12.598262	()
8	496	87.193055	593.919	0	27.914473	14.223135	0
9	496	87.681545	594.0959	0	30 .931 794	15.760536	0
10	496	88.170035	594.27425	0	33.779751	17.211643	0
11	496	88.65853	594.45405	0	36,452999	18.573731	0
12	496	89.147025	594.6353	0	38.951941	19.847005	0
13	496	89.635515	594.818	0	41.277023	21.031694	0
14	496	90.124005	595.00215	0	43.426758	22.127039	0
15	496	90.612495	595.18775	0	45.397773	23.131321	0
16	496	91,10099	595.3748	0	47.194363	24.046729	0
17	496	91.589485	595.5633	0	48.813171	24.871553	0
18	496	92.077975	595.7533	0	50.254696	25.606047	0
19	496	92.566465	595.9448	0	51.521323	26.251425	0
20	496	93.054955	596.13775	0	52 .61355 1	26.807943	0
21	496	93.54345	596.3322	0	53 .52997 7	27.274885	0
22	496	94.031945	596.5281	0	54,273033	27.653491	0
23	496	94.520435	596.7255	0	54. 841337	27.943057	0
24	496	95.008925	596.92445	0	55.239217	28.145787	0
25	496	95.49742	597.12485	0	55.467189	28.261945	0
26	496	95.985915	597.32675	0	55.525796	28.291806	0
27	496	96.474405	597.5302	0.	55.4156	28.235658	0
28	496	96.962895	597.73515	0	55.139027	28.094737	0
29	496	97.451385	597.94165	0	54.698533	27.870295	0
. 30	496	97.93988	598.1497	0	54.092781	27.561648	0
31	496	98.428375	598.35925	0	53.322348	27.169093	0
32	496	98.916865	598.5703	0	52. 391 5 67	26.694837	0
33	496	99.405355	598.7829	0	51.29728	26.13727	0
34	496	99.89385	598.9971	0	50.043817	25.498599	0
35	496	100.38235	599.21285	0	48.629916	24.77818	0
36	496	100.87085	599.4301	0	47.056163	23.976312	0
37	496	101.35935	599.64895	0	45.32133	23.092371	0
38	496	101.84785	599.8694	0	43,427903	22.127622	0

39	496	102.33635	600.0914	0	41.374658	21.081441	0
40	496	102.8248	600.31495	0	39.158529	19.952267	0
41	496	103,31325	600.5401	0	36,782035	18.741383	O
42	496	103.80175	600.7669	0	34.244002	17.44819	0
43	496	104.29025	600.99525	0	31.541409	16.071151	0
44	496	104,77875	601.2252	0	28.673131	14.60969	0
45	496	105.26725	601.4568	0	25.638039	13.063234	0
46	496	105,75575	601.69	0	22.435036	11.431222	0
.47	496	106,20015	601.9035	0	19.020712	9.691537	0
48	496	106.62365	602.10835	0	15.204579	7.7471198	0
49	496	107.07035	602.3257	0	11.040893	5.6256161	0
50	496	107.51705	602.5444	0	6.7294443	3.4288231	0
51	496	107.9638	602.7645	0	2.2680943	1.1556518	0

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment
Saturated Topsoil Material (Condition 2)
File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 2.gsz
Date: 5/4/2010

Horz Seismic Load: 0 Vert Seismic Load: 0

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

File Information

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment Saturated Topsoil Material (Condition 2)

Created By: Roger W. Cecil, P.E.

Revision Number: 184 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 9:05:43 AM

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 2.gsz

Directory: C:\Working Folder\Sporn\VIBRATION ASSESSMENT\

Last Solved Date: 5/4/2010 Last Solved Time: 9:05:48 AM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

SLOPE/W Analysis

Description: Shallow Sloughing Assessment

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 0.5 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8
Ending Optimization Points: 16

Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materiais

Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Topsoil

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0 psf

Phi: 27 °

Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 2

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (74, 591) ft

Left-Zone Right Coordinate: (96.98653, 598.24439) ft

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (105.97741, 601.99059) ft

Right-Zone Right Coordinate: (128, 611) ft

Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
0	589
135	589
1.46	605
309	605

Piezometric Line 2

Coordinates

X (ft)	Y (ft)		
- 74	591		
82	592		
106	602		
126	610		

128	611
130	611

Seismic Loads

Horz Seismic Load: 0 Vert Seismic Load: 0

Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,10,41,12,13,14,42,8	974
Region 4	Silty Sand (2)	40,39,16,12,41	467
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	38,17,16,39	152 ~
Region 7	Silty Sand (2)	19,20,24,25,23	51.5
Region 8	Silty Sand (1)	37,27,22,18,17,38	19
Region 9	Silty Sand (2)	13,20,24,25,14	324
Region 10	Gravelly Sand (3)	22,28,29,23,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,42	2405.5
Region 12	Topsoil	38,21,26,37	2
Region 13	Topsail	21,38,39,15	1.6
Region 14	Topsoil	39,40,41,10,11,15	22

Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586

Point 9	0	590
Point 10	74	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	126	610
Point 22	149	610
Point 23	167	602
Paint 24	148	600
Point 25	170	600
Point 26	128	611
Point 27	147	611
Point 28	154	608
Point 29	159	608
Point 30	214	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	130	611
Point 38	128	610
Point 39	108	602
Point 40	84	592
Point 41	76	591
Point 42	193	589
Excellent to the second of the	·····	***

Critical Slip Surfaces

	1	lip face	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
-	49	`	0.54	(19.266, 782.232)	200.189	(108.187, 602.875)	(83.5294, 592.637)

Slices of Slip Surface: 496

	Slip						Cohesi
	Surfac	X (ft)	Y (ft)	PWP (psf)	Base Normal	Frictional	ve
	e	/ / (IC)	1 (10)	r vvr (psi)	Stress (psf)	Strength (psf)	Strengt
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					h (psf)
1	496	83.773605	592.72035	1.1625606	2.117182	0.48640389	0
2	496	84.2621	592.88735	3.4437545	6.273922	1.4420424	0
3	496	84.750595	593.05575	5.6371171	10.2741	2,362661	0
4	496	85.239085	593.22555	7.7422427	14.115899	3.2475403	0
5	496	85.727575	593.39675	9.7589253	17.79713	4.0956698	0
6	496	86.216065	593.5694	11.687155	21.316194	4.9062407	0
7	496	86.70456	593.7435	13.526542	24.669585	5.6776639	0
8	496	87.193055	593.919	15.276704	27.858629	6.410811	0
9	496	87.681545	594.0959	16.937456	30.877926	7.1030241	0
10	496	88.170035	594.27425	18.508613	33.727856	7.7545919	0
11	496	88.65853	594.45405	19.989239	36.404994	8.3642448	0
12	496	89.147025	594.6353	21,381843	38.909737	8.9309079	0
13	496	89.635515	594.818	22.681473	41.238694	9.4553762	0
14	496	90.124005	595.00215	23.892184	43.392296	9.9358032	0
15	496	90.612495	595.18775	25.012289	45.370996	10.373279	()
16	496	91.10099	595.3748	26.040114	47.173344	10.767919	0
1.7	496	91.589485	595.5633	26.975901	48.7979	11.118864	0
18	496	92.077975	595.7533	27.821811	50.245162	11.425268	0
19	496	92.566465	595.9448	28.574275	51.517513	11.690164	0
20	496	93.054955	596.13775	29.233556	52.611648	11.911733	0
21	496	93.54345	596.3322	29.80182	53.531878	12.091068	0
22	496	94.031945	596.5281	30.27744	54.276831	12.2283	0
23	496	94.520435	596.7255	30,658792	54.848925	12.325488	0
24	496	95.008925	596.92445	30.94806	55.250587	12.382756	0
25	496	95.49742	597.12485	31.141733	55.48044	12.40119	0

26	496	95.985915	597.32675	31.242005	55.540923	12.380917	0
27	496	96.474405	597.5302	31.249185	55.434487	12.323027	0
28	496	96.962895	597.73515	31.159795	55.161666	12.229564	0
29	496	97.451385	597.94165	30.976048	54.723032	12.099693	0
30	496	97.93988	598.1497	30.698255	54.121017	11.934493	0
31	496	98.428375	598.35925	30.322984	53.358073	11.736964	0
32	496	98.916865	598.5703	29.852451	52.432886	11.505306	0
33	496	99.405355	- 598.7829	29.285128	51.346054	11.240603	0
34	496	99.89385	598.9971	28.621361	50.10003	10.943928	0
35	496	100.38235	599.21285	27.861513	48.693548	10.614452	0
36	496	100.87085	599.4301	27.004065	47.127196	10.253248	0
37	496	101.35935	599.64895	26.047535	45.401614	9.8613956	0
38	496	101.84785	599.8694	24.994168	43.515549	9.4371152	0
39	496	102.33635	600.0914	23.842486	41.469648	8.9814873	0
40	496	102.8248	600.31495	22.59103	39.260843	8.4936943	0
41	496	103.31325	600.5401	21.242057	36.889797	7.9729216	. 0
42	496	103.80175	600.7669	19.792268	34.353484	7.4193101	Q
43	496	104.29025	600.99525	18.242829	31.650754	6.8316791	0
44	496	104.77875	601.2252	16.593249	28.782337	6.2106507	0
45	496	105.26725	601.4568	14.843037	25.743409	5.554017 <b>1</b>	0
46	496	105.75575	601.69	12.991902	22.532885	4.8613735	0
47	496	106.20015	601.9035	11.0159	19.108705	4.1234899	0
48	496	106.62365	602.1 <b>0</b> 835	8.8062445	15.278095	3.2975725	0
49	496	107.07035	602.3257	6.3944361	11.096618	2.3958813	0
50	496	107.51705	602.5444	3.8969775	6.7646065	1.4611299	0
51	496	107.9638	602.7645	1.3133153	2.2805365	0.49282382	0
				CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR O	CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDSON, ST. BOLDS	

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment Moist Topsoil Material with Maximum Pseudo-Static Train Loads

(Condition 3) File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 3.gsz Date: 5/4/2010 Horz Seismic Load: 0.046 Vert Seismic Load: 0.008



Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment Moist Topsoil Material with Maximum Pseudo-Static

Train Loads (Condition 3)
Created By: Roger W. Cecil, P.E.

Revision Number: 187 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 9:09:43 AM

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 3.gsz

Directory: C:\Working Folder\Sporn\VIBRATION ASSESSMENT\

Last Solved Date: 5/4/2010 Last Solved Time: 9:09:54 AM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## **Analysis Settings**

#### SLOPE/W Analysis

**Description: Shallow Sloughing Assessment** 

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

**FOS Calculation Option: Constant** 

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05 Minimum Slip Surface Depth: 0.5 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per Insertion: 1
Driving Side Maximum Convex Angle: 5 °
Resisting Side Maximum Convex Angle: 1 °

#### Materials

#### Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 °

Phi-B: 0 *

Pore Water Pressure Piezometric Line: 1

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 * Phi-B: 0 *

Pore Water Pressure
Piezometric Line: 1

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27° Phi-B: 0°

Pore Water Pressure
Piezometric Line: 1

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

#### Topsoil

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0 psf

Phi: 27 ° Phi-B: 0 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (74, 591) ft

Left-Zone Right Coordinate: (96.98653, 598.24439) ft

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (105.97741, 601.99059) ft

Right-Zone Right Coordinate: (128, 611) ft

Right-Zone Increment: 10 Radius Increments: 10

# Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

## Piezometric Lines

#### Piezometric Line 1

#### Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

## Seismic Loads

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

# Regions

İ		Material	Points	Area (ft²)	
	Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355	

Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,10,41,12,13,14,42,8	974
Region 4	Silty Sand (2)	40,39,16,12,41	467
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	38,17,16,39	152
Region 7	Silty Sand (2)	19,20,24,25,23	51.5
Region 8	Silty Sand (1)	37,27,22,18,17,38	19
Region 9	Silty Sand (2)	13,20,24,25,14	324
Region 10	Gravelly Sand (3)	22,28,29,23,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,42	2405.5
Region 12	Topsoil	38,21,26,37	2
Region 13	Topsoil	21,38,39,15	16
Region 14	Topsoil	39,40,41,10,11,15	22

# Points

	X (ft)	Y (ft)
Point 1	O	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	74	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602

Point 20	145	597
Point 21	126	610
Point 22	149	610
Point 23	167	602
Point 24	148	600
Point 25	170	600
Point 26	128	611
Point 27	147	611
Point 28	154	608
Point 29	159	608
Point 30	214	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	130	611
Point 38	1.28	610
Point 39	108	602
Point 40	84	592
Point 41	76	591
Point 42	193	589

Critical Slip Surfaces

O West Law (C.C. V. Salas Cal. in middle conductors) demand class	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	496	1.08	(19.266, 782.232)	200.189	(108.187, 602.875)	(83.5294, 592.637)

Slices of Slip Surface: 496

× ve		errito manere	C1001 1000					
		Slip Surfac e	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesiv e Strengt h (psf)
		A TOTAL CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY						11 (621)
-	1	496	83.773605	592.72035	0	2.1071048	1.0736235	0

2	496	84.2621	592.88735	0	6.2425552	3.1807408	0
3	496	84.750595	593.05575	0	10.220128	5.2074153	0
4	496	85.239085	593.22555	0	14.037623	7.152526	0 .
5	496	85.727575	593.39675	0	17.693049	9.0150585	0
5	496	86.216065	593.5694	0	21.185006	10,7943	0
7	496	86.70456	593.7435	0	24.509606	12.488268	0
8	496	87.193055	593.919	0	27.667988	14.097544	0
9	496	87.681545	594.0959	0	30.656682	15.62036	0
10	496	88.170035	594,27425	0	33,474148	17.05593	0
11	496	88.65853	594.45405	0	36.120805	18.404469	0
12	496	89.147025	594.6353	0	38.593211	19.664223	()
13	496	89.635515	594.818	0	40.891812	20.835419	0
1.4	496	90.124005	595.00215	0	43.015121	21.917299	0
15	496	90.612495	595.18775	0	44.963592	22.910094	0
1.6	496	91.10099	595.3748	0	46.735776	23.813067	0
17	496	91.589485	595.5633	0	48.334049	24.627428	0
18	496	92.077975	595.7533	0	49.755086	25.351483	0
19	496	92.566465	595.9448	0	51.003176	25.987416	0
20	496	93.054955	596.13775	0	52.076911	26.534511	0
21	496	93.54345	596.3322	0	52.976789	26.993022	0
22	496	94.031945	596.5281	0	53.703337	27.363217	0
23	496	94.520435	596.7255	0	54.258968	27.646325	0
24	496	95.008925	596.92445	0	54.646103	27.84358	0
25	496	95.49742	597.12485	0	54.863359	27.954278	0
26	496	95.985915	597.32675	0	54.913171	27.979658	0
27	496	96.474405	597.5302	0	54.797982	27.920967	0
28	496	96.962895	597.73515	0	54.516435	27.777511	0
29	496	97.451385	597.94165	0	54.072869	27.551503	0
30	496	97.93988	598.1497	0	53.46594	27.242257	0
31	496	98.428375	598.35925	0	52.698101	26.851023	0
32	496	98.916865	598.5703	0	51.769915	26.378089	0
33	496	99.405355	598.7829	0	50.683851	25.824712	0
34	496	99.89385	598.9971	0	49.4386	25.190225	0
35	496	100.38235	599.21285	0	48.03664	24.475891	0
36	496	100.87085	599.4301	0	46.474807	23.680097	0
37	496	101.35935	599.64895	0	44.757474	22.805072	0

38	496	101.84785	599.8694	0	42.881511	21.849221	0
39	496	102.33635	600,0914	0	40.849419	20.813819	0
40	496	102.8248	600.31495	0	38.658118	19.697295	0
41	496	103.31325	600,5401	0	36.308256	18.49998	0
42	496	103.80175	600.7669	0	33.798648	17.221271	0
43	496	104.29025	600.99525	0	31.126269	15.859626	0
44	496	104,77875	601.2252	0	28.293685	14.416353	0
45	496	105.26725	601.4568	0	25.296051	12.888982	0
46	496	105.75575	601.69	0	22,134105	11.27789	0
47	496	106.20015	601.9035	0	18.763037	9.5602449	0
48	496	106.62365	602.10835	0	14.997122	7.6414152	0
49	496	107.07035	602.3257	0	10.889009	5.5482271	0
. 50	496	107.51705	602,5444	0	6.6360133	3.3812176	0
51	496	107.9638	602.7645	0	2.2363867	1.1394959	0

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

(Condition 4)

Comments: Shallow Sloughing Assessment Saturated Topsoil Material with Maximum Pseudo-Static Train Loads

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 4.gsz Date: 5/4/2010

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008



# SLOPE/W Analysis

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H

Comments: Shallow Sloughing Assessment Saturated Topsoil Material with Maximum Pseudo-

Static Train Loads (Condition 4) Created By: Roger W. Cecil, P.E.

Revision Number: 186 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 9:12:48 AM

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H Condition 4.gsz

Directory: C:\Working Folder\Sporn\VIBRATION ASSESSMENT\

Last Solved Date: 5/4/2010 Last Solved Time: 9:12:54 AM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

# **Analysis Settings**

#### SLOPE/W Analysis

Description: Shallow Sloughing Assessment

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

**Side Function** 

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05

Minimum Slip Surface Depth: 0.5 ft

Optimization Maximum Iterations: 2000

Optimization Converses T-1---- 1. 007

Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 °

Resisting Side Maximum Convex Angle: 1 °

#### Materials

#### Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1

#### Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1

#### Gravelly Sand (3)

Model: Mohr-Coulomb

Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 "

Phi-B: 0°

Pore Water Pressure
Piezometric Line: 1

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ' Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

#### Topsoil

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 2

# Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (74, 591) ft

Left-Zone Right Coordinate: (96.98653, 598.24439) ft

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (105.97741, 601.99059) ft

Right-Zone Right Coordinate: (128, 611) ft

Right-Zone Increment: 10 Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

## Piezometric Lines

#### Piezometric Line 1

#### Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

#### Piezometric Line 2

#### Coordinates

X (ft)	Y (ft)
74	591
82	592
106	602

 126	610
128	611
130	611

# Seismic Loads

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,10,41,12,13,14,42,8	974
Region 4	Silty Sand (2)	40,39,16,12,41	467
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	38,17,16,39	152
Region 7	Silty Sand (2)	19,20,24,25,23	51.5
Region 8	Silty Sand (1)	37,27,22,18,17,38	19
Region 9	Silty Sand (2)	13,20,24,25,14	324
Region 10	Gravelly Sand (3)	22,28,29,23,19,18	1.2.1
Region 11	Fly Ash (7)	30,31,6,5,4,8,42	2405.5
Region 12	Topsoil	38,21,26,37	2
Region 13	Topsoil	21,38,39,15	16
Region 14	Topsoil	39,40,41,10,11,15	22

# Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586

Point 8	199	586
Point 9	0	590
Point 10	. 74	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	1.45	610
Point 19	145	602
Point 20	145	597
Point 21	126	610
Point 22	149	610
Point 23	1.67	602
Point 24	148	600
Point 25	170	600
Point 26	128	611
Point 27	147	611
Point 28	154	608
Point 29	159	608
Point 30	214	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	130	611
Point 38	128	610
Point 39	108	602
Point 40	84	592
Point 41	76	591
Point 42	193	589
ra see <del>ee de la vale de la transitation de procession de la vale de la de</del> la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la		**************************************

Critical Slip Surfaces

Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
 496	0.47	(19.266, 782.232)	200.189	(108.187, 602.875)	(83.5294, 592.637)

Slices of Slip Surface: 496

	Slip	1808.450					Cohesi
	Surfac	X (ft)	Y (ft)	PWP (psf)	Base Normal	Frictional	ve
	e	7 (16)	1 (10)	1 W1 (p31)	Stress (psf)	Strength (psf)	Strengt
							h (psf)
1	496	83.773605	592.72035	1.1625606	2.0985779	0.47692464	0
2	496	84.2621	592.88735	3.4437545	6.2181589	1.4136297	0
3	496	84.750595	593.05575	5.6371171	10.182405	2.3159401	0
4	496	85.239085	593.22555	7.7422427	13.98911	3.1829381	0
5	496	85.727575	593.39675	9.7589253	17.63647	4.0138095	0
6	496	86.216065	593.5694	11.687155	21.12327	4.8079409	0
7	496	86.70456	593.7435	13.526542	24.444072	5.5627592	0
8	496	87.193055	593.919	15.276704	27.602515	6.2803146	0
9	496	87.681545	594.0959	16.937456	30.591271	6.9569661	0
10	496	88.170035	594.27425	18.508613	33.412643	7.5939826	0
11	496	88.65853	594.45405	19.989239	36.063199 ⁻	8.1900916	0
12	496	89.147025	594.6353	21.381843	38.541415	8.7432386	0
13	496	89.635515	594.818	22,681473	40.847733	9.2561717	0
14	496	90.124005	595.00215	23.892184	42.976829	9.7241125	0
15	496	90.612495	595.18775	25.012289	44.932989	10.150103	O
16	496	91.10099	595.3748	26.040114	46.712846	10.533283	0
17	496	91.589485	595.5633	26.975901	48.316869	10.873767	0
18	496	92.077975	595.7533	27.821811	49.745552	11.170703	0
19	496	92.566465	595.9448	28.574275	50.997461	11.425184	0
20	496	93.054955	596.13775	29.233556	52.076911	11.63927	0
21	496	93.54345	596.3322	29.80182	52.980591	11.810174	0
22	496	94.031945	596.5281	30.27744	53.712832	11.940929	0
23	496	94.520435	596.7255	30,658792	54.272246	12.031656	0
24	496	95.008925	596.92445	30.94806	54.661263	12.08248	0
25	496	95.49742	597.12485	31.141733	54.882288	12.096417	0

granden-treatment							
	26 49	6 95.985915	5 597.32675	31.242005	54.93397	12.071659	1 0
	27 496	6 96.474405	597.5302	31.249185	54.822536	12.011222	1 0
	28 490	5 96.962895	5   597.73515	31.159795	54.544734	11.915222	0
	29 496	97.451385	597.94165	30.976048	54.10679	11.785702	1 0
	30 496	97.93988	598.1497	30.698255	53.50547	11.620856	1 0
3	1 496	98.428375	598.35925	30.322984	52.745107	11.424642	1 0
3	2 496	98.916865	598.5703	29.852451	51.82438	11.195257	1 0
3	3 496	99,405355	598.7829	29.285128	50.745757	10.934736	1 0
3	4 496	99.89385	598.9971	28.621361	49.509802	10.643192	<del>                                     </del>
3	5 496	100.38235	599.21285	27.861513	48.117116	10.320745	0
3	6 496	100.87085	599.4301	27.004065	46.566403	9.9675092	0
3.	7 496	101.35935	599.64895	26.047535	44.858296	9.5845611	0
38	3 496	101.84785	599.8694	24.994168	42.991535	9.1701166	0
35	496	102.33635	600.0914	23.842486	40.96676	8.725253	0
40	496	102.8248	600.31495	22.59103	38.782756	8.2500965	0
41	. 496	103.31325	600.5401	21.242057	36.438313	7.7428789	0
42	496	103.80175	600.7669	19.792268	33.932254	7.2046825	0
43	496	104.29025	600.99525	18.242829	31.26156	6.6333748	0
44	496	104.77875	601.2252	16.593249	28.426954	6.0295739	0
45	496	105.26725	601.4568	14.843037	25.425452	5.39201	
46	496	105.75575	601.69	12.991902	22.254108	4.7193299	0
47	496	106.20015	601.9035	11.0159	18.870158	4.0019443	0
48	496	106.62365	602.10835	8.8062445	15.086751	3.200078	0
49	496	107.07035	602.3257	6.3944361	10.957005	2.3247449	
50	496	107.51705	602.5444	3.8969775	6.6792125	1.4176195	0
51	496	107.9638	602.7645	1.3133153	2.2514378	0.47799728	0
		Commence of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	THE PERSON NAMED IN STREET OF THE PERSON OF THE				· 1

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H Comments: Shallow Sloughing Assessment

with Ongoing Repairs File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H_REPAIR.gsz

Date: 5/4/2010 Horz Seismic Load: 0.046 Vert Seismic Load: 0.008



# SLOPE/W Analysis

Report generated using GeoStudio 2007, version 7.16. Copyright © 1991-2010 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Fly Ash Disposal Facility Western Dike Section H-H Comments: Shallow Sloughing Assessment with Ongoing Repairs

Created By: Roger W. Cecil, P.E.

Revision Number: 191 Last Edited By: Roger Cecil

Date: 5/4/2010 Time: 8:58:30 AM

File Name: Sporn FADF-Shallow Sloughing Assessment for Section H-H_REPAIR.gsz

Directory: C:\Working Folder\Sporn\VIBRATION ASSESSMENT\

Last Solved Date: 5/4/2010 Last Solved Time: 8:58:41 AM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## **Analysis Settings**

#### SLOPE/W Analysis

**Description: Shallow Sloughing Assessment** 

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Advanced

Number of Slices: 50

Optimization Tolerance: 0.05

Minimum Slip Surface Depth: 0.5 ft

Optimization Maximum Iterations: 2000

Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16

Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5  $^{\circ}$ 

Resisting Side Maximum Convex Angle: 1 °

#### **Materials**

#### Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1

#### Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 0 °

Pore Water Pressure

Piezometric Line: 1

#### Gravelly Sand (3)

Model: Mohr-Coulomb

Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 0 °

#### Pore Water Pressure Piezometric Line: 1

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure
• Piezometric Line: 1

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

#### Rockfill

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

# Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (74, 591) ft

Left-Zone Right Coordinate: (96.98653, 598.24439) ft

Left-Zone Increment: 10 Right Projection: Range

Right-Zone Left Coordinate: (105.97741, 601.99059) ft

Right-Zone Right Coordinate: (128, 611) ft

Right-Zone Increment: 10 Radius Increments: 10

# Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

# Piezometric Lines

## Piezometric Line 1

#### · Coordinates

X (ft)	Y (ft)
0	589
135	589
146	605
309	605

# Seismic Loads

Horz Seismic Load: 0.046 Vert Seismic Load: 0.008

Ignore seismic load in strength: No

# Regions

	1		
	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355

Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,10,41,12,13,14,45,8	974
Region 4	Silty Sand (2)	40,42,43,39,16,12,41	420.34
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	38,17,16,39,44	151.832
Region 7	Silty Sand (2)	19,20,24,25,23	51.5
Region 8	Silty Sand (1)	37,27,22,18,17,38	19
Region 9	Silty Sand (2)	13,20,24,25,14	324
Region 10	Gravelly Sand (3)	22,28,29,23,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,45	2405.5
Region 12	Rockfill	38,21,26,37	2
Region 13	Rockfill	21,38,44,39,15	16.168
Region 14	Rockfill	39,43,42,40,41,10,11,15	68.66

# Points

A COLUMN TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	O	590
Point 10	74	591
Point 11	82	592
Point 12	137	591
Point 13	139	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602

Point 20	145	597
Point 21	126	610
Point 22	149	610
Point 23	167	602
Point 24	148	600
Point 25	170	600
Point 26	128	611
Point 27	147	611
Point 28	154	608
Point 29	159	608
Point 30	214	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	130	611
Point 38	128	610
Point 39	108.7	602
Point 40	84	592
Point 41	76	591
Point 42	91.3	592
Point 43	106.9	600.2
Point 44	109.2	602.48
Point 45	193	589

Critical Slip Surfaces

Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
 1322	1.56	(78.795, 686.555)	90.165	(128, 611)	(96.9865, 598.244)

Slices of Slip Surface: 1322

	8							
	Slip	V (f+)	V /f+)	PWP	Base Normal	Frictional	Cohesiv	
	Surfac	, X (ft)	Υ (ΤΤ)	(psf)	Stress (psf)	Strength	e	

	е					(psf)	Strengt h (psf)
1	1322	97.28698	598.30735	0	6.5487514	5.1164453	0
2	1322	97.88788	598.4354	0	19.442419	15.190082	0
3	1322	98.488775	598.56775	0	31.914716	24.934509	0
4	1322	99.08967	598.7044	0	43.951596	34.338751	0
5	1322	99.69057	598.8454	0	55.535302	43.388933	0
6	1322	100.29146	598.99075	0	66.649912	52.072618	0
7	1322	100.89235	599.14045	0	77.276528	60.375041	0
8	1322	101.49325	599.29455	0	87.399683	68.284116	0
9	1322	102.09415	599.45305	0	97.005794	75.789233	0
10	1322	102.69505	599.616	0	106.0767	82.876198	0
11	1322	103.29595	599.78345	0	114.60088	89.536022	0
12	1322	103.89685	599.9554	0	122.56712	95.759931	0
13	1322	104.49775	600.13185	O	129.96443	101.53934	0
14	1322	105.09865	600.31285	. 0	136.78685	106.8696	0
15	1322	105.69955	600.4984	0	143.02544	111.74372	0
16	1322	106.32095	600.6952	0	148.30533	115.86882	0
17	1322	106.96285	600.90365	0	152,58197	119.2101	0
18	1322	107.6047	601.1174	0	156.20179	122.03821	0
19	1322	108.3128	601.35975	- 771.2495 1	170.01534	119.04602	0.1
20	1322	108.95	601.58265	- 785.1636 7	165.72369	116.04097	0.1
21	1322	109.65115	601.8357	800.9441 8	164,21907	114.98743	0.1.
22	1322	110.41375	602.11665	- 818.4777 5	165,45459	107.44746	0.1
23	1322	111.03665	602.35255	833.1929	165.5921	107.53677	0.1
24	1322	111.65955	602.5937	848.2377 9	165.23744	107.30645	0.1

	· · · · · · · · · · · · · · · · · · ·	····	·	***************************************		-	
25	1322	112.28245	602.8402	863.6194 1	164.4095	106.76878	0.1
26	1322	112.9053	603.09205	879.3445 4	163.11238	105.92642	0.1
27	1322	113.52815	603.3493	895.4044	161.36509	104.79172	0.1
28	1322	114.15105	603.6121	-911.79	159.15712	103.35785	0.1
29	1322	114,77395	603.8804	928.5366	156.52256	101.64694	0.1
30	1322	115.39685	604.15425	945.6342	153.45117	99.652355	0.1
(**)	1322	116.01975	604.4338	- 963.0726 4	149.94777	97.377221	0.1
32	1322	116.64265	604,71905	980.8705 8	146.03192	94.834239	0.1
33	1322	117.26555	605.01	- 999,0314 2	141.70574	92.024783	0.1
34	1322	117.88845	605.30675	1017.543 5	136.96288	88.944733	0.1
35	1322	118.51135	605.60945	1036.423 9	131.80604	85.595844	0.1
36	1322	119.13425	605.9181	- 1055.688 9	126.23528	81.978148	0.1
37	1322	119.75715	606.23275	1075.324 8	120.24662	78.08907	0.1
38	1322	120.38005	606.55345	1095.332 3	113.83365	73.924437	0.1

yelemas Millera de minaria	raprovional de la company	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	-		10/78/14 Million Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont		
39	1322	121.00295	606.8803	- 1115.725 4	106.99036	69.480355	0.1
40	1322	121.62585	607.21345	- 1136.517 6	99.706992	64.750478	0.1
41	1322	122.24875	607.5529	- 1157,706 6	91.972843	59.727863	0.1
42	1322	122.87165	607.8987	1179.276 4	83.773662	54.403252	0.1
43	1322	123.4648	608.2339	O	66.674695	52.091981	0
44	1322	124.0282	608.55795	0,	57.764842	45.13084	. 0
45	1322	124.59155	608.8874	0	48.437083	37.843196	0
46	1322	125.1549	609.22235	0	38.679681	30.219879	0
47	1.322	125.7183	609.5629	0	28.481487	22.252176	0
48	1322	126,21465	609.8673	0	21.036726	16.435692	0
49	1322	126.69105	610.16415	O	15.878217	12.405423	0
50	1322	127.2146	610.49495	0	9.8267589	7.6775055	0
51.	1322	127.7382	610.8308	0	3.3458689	2.6140793	0

## APPENDIX V

# FESM SLOPE STABILITY AND LIQUEFACTION ANALYSES



## FINITE ELEMENT STRESS METHOD STABILITY ANALYSIS SUMMARY RAILWAY-INDUCED VIBRATION ASSESSMENT BOTTOM ASH AND FLY ASH DISPOSAL FACILITIES PHILIP SPORN PLANT NEW HAVEN, MASON COUNTY, WEST VIRGINIA **GA FILE NO. 09-387**

#### **GENERAL**

Geo/Environmental Associates, Inc. (GA) has prepared finite element stress method (FESM) slope stability analyses for the western dikes of the Bottom Ash Disposal and Fly Ash Disposal Facilities at the Philip Sporn Plant. Specifically, GA has evaluated Section A-A for the Bottom Ash Disposal Facility Western Dike and Section H-H for the Fly Ash Disposal Facility Western Dike. The FESM analyses were conducted using the finite element computer program QUAKE/W and the slope stability analyses were conducted using SLOPE/W. Both QUAKE/W and SLOPE/W are developed by GEO-SLOPE International, Ltd. of Calgary, Alberta Canada.

The QUAKE/W program was used to conduct finite element analyses in order to model initial stresses in the western dikes under static conditions. Thereafter, the QUAKE/W program was used to approximate the stress conditions at specified time steps generated during the field measured railway-induced vibration events. The results of the railway-induced vibration events that are modeled in the QUAKE/W finite element analyses are then evaluated for liquefaction. The stresses developed in the railway-induced vibration analyses are then applied in SLOPE/W to conduct slope stability analyses based on the Newmark Deformation Analysis Method. Specifically, SLOPE/W uses the stress conditions generated by QUAKE/W to perform a static analysis for each time step with the stress conditions approximated at that time step. The result is a dynamic analysis for the specific train vibration event. The SLOPE/W slope stability analyses were performed in both the upstream and downstream directions for both Section A-A and H-H. At the request of the USEPA, both shallow-seated and deep-seated (global) slip surfaces were modeled in the FESM slope stability analyses. GA conservatively applied the vibration events from the dike exterior toe monitoring locations (i.e., Location A for Section A-A and Location C for Section H-H) to the downstream direction FESM slope stability analyses. We applied the accelerations from the dike crest monitoring locations (i.e., Location B for Section A-A and Location D for Section H-H) to the upstream direction FESM slope stability analyses. Table V-1 summarizes the vibration event applied in each analysis.



	TABLE V-1 SUMMARY OF VIBRATION EVENT MENT STRESS METHOD SLOPE S	
Critical Section	Vibration Monitoring Location	Maximum Railway Induced Vibration Data Used
	Location A	November 11, 2009
	Location A (Exterior Toe - Adjacent to Track) Disposal Facility tion A-A  Location B (Crest) Upstream Direction Analyses  Location C (Exterior Toe - Adjacent to Track) isposal Facility Downstream Direction Analyses	12:12 pm Train
Bottom Ash Disposal Facility	Downstream Direction Analyses	10 sec. to 20 sec.
Section A-A	Location B	November 11, 2009
	(Crest)	12:12 pm Trạin
•	Upstream Direction Analyses	16 sec. to 26 sec.
	Location C	November 11, 2009
	(Exterior Toe - Adjacent to Track)	12:12 pm Train
Fly Ash Disposal Facility	Downstream Direction Analyses	36 sec. to 46 sec.
Section H-H	Location D	November 11, 2009
	(Crest)	12:12 pm Train
	Upstream Direction Analyses	0 sec. to 5.5 sec.

#### **MATERIAL PARAMETERS**

Strength parameters for the various embankment and foundation materials used in the finite element stability analyses for critical Sections A-A and H-H are provided in Tables V-2 and V-3, respectively. In general, the parameters are based on site specific data and by applying accepted reference data to the site specific soils/conditions. Material parameters required for the finite element stress analysis include the unit weight, damping ratio, small strain shear modulus, Poisson's ratio, and effective friction angle,  $\varphi$ '. The damping ratio for the fly ash and foundation materials was measured by free-free resonant column testing performed by Dr. Kalinski at the University of Kentucky. The damping ratio for all other materials was developed by relating published data to site specific soils. Small strain shear modulus and Poisson's ration values were calculated from shear wave velocity data that was obtained by Dr. Kalinski using crosshole seismic testing performed at site. Unit weight and  $\varphi$ ' were determined from in-situ and laboratory testing performed by AEP and GA.



TABLE V.2. FESM AND QUAKE/W MATERIAL PARAMETERS FOR SECTION A-A ANALYSIS

	Silty Clay (1)	Fly Ash (2)	Bottom Ash (3)	Clayey Sand (4)	Bottom Ash (5)	Gravelly Sand (6)	Clayey Sand (7)	Road Material (8)	Clayey Sand (9)	Sand (10)	Sand & Gravel	Riprap (12)
Unit Weight y (pcf)	123	26	80	105	62	1111	110	145	115	123	123	145
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1.2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1,2)
Damping Ratio $\lambda$ (%)	. 7	4.5	10	10	10	01	10	10	7	7	7	10
Source ⁽⁶⁾	Kalinski Report	Kalinski Report	Seed- Idriss, Kokusho	Seed- Idriss, Kokusho	Seed- Idriss, Kokusho	Seed- Idriss, Kokusho	Seed- Idriss, Kokusho	Seed-Idriss, Kokusho	Kalinski Report	Kalinski Report	Kalinski Report	Seed- Idriss,
Small Strain Shear Modulus Gmax (psf)	1,839,790	568,271	4,712,248	4,488,812	2,676,022	4,790,943	4,747,781	6.258,440	6,816,193	7,245,081	7,245,081	6,258,440
Source ⁽³⁾	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Renort	Kalinski Renort	Kalinski	Kalinski
Poisson's Ratio v	.468	0.495	0.468	0.352	0.352	0.352	0.468	0.352	0.468	0.468	0.468	0.352
Source	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Renort	Kalinski	Kalinski
Cyclic Number Function ^(4,5)	QUAKE	nso	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE
Phi Angle φ (degrees)	36	33	36	31	38	34	34	36	29	29	32	38
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1,2)	AEP ^(1,2)	AEP(1.2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)
										į		3

Notes:

AEP Philip Sporn Electric Generating Plant Bottom Ash Facility - Engineering Report, 1996 AEP Philip Sporn Power Plant Bottom Ash Disposal Facility - Stability Analysis, 2009

50000

G_{max} derived from shear wave velocities from cross hole measurements

Cyclic Number Function for fly ash based on data prepared by Ohio State University (OSU) Cyclic Number Function for other materials based on functions built into QUAKE/W computer program

(QUAKE)

Damping Ratios From: - Kalinski Report 9

- Seed Idriss (SHAKE91 Users Manual)

- Kokusho (Geotchnical Earthquake Engineering by Kuo Towhata)



	Silty Sand (1)	Silty Sand (2)	Gravelly Sand (3)	Silty Clay (4)	Silty Sand (5)	Sandy Silt (6)	Fly Ash (7)	Silty Sand (8)
Unit Weight $\gamma$ (pcf)	130	107	105	115	131	130	06	112
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	GA	AEP(1,2)
Damping Ratio λ (%)	10	10	10	10	7	7	4.5	10
Source ⁽⁶⁾	Seed-Idriss, Kokusho	Seed-Idriss, Kokusho	Seed-Idriss, Kokusho	Seed-Idriss, Kokusho	Kalinski Report	Kalinski Report	Kalinski Report	Seed-Idriss. Kokusho
Small Strain Shear Modulus G _{max}	1,944,493	3,182,930	3,123,436	3,420,906	1,959,450	1,933,302	774,831	3,331,665
Source ⁽³⁾	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report
Poisson's Ratio v	0.352	0.352	0.352	0.352	0.45	0.45	0.495	0.45
Source	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report	Kalinski Report
Cyclic Number Function ^(4,5)	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	QUAKE	nso	QUAKE
Phi Angle φ (degrees)	34	35	33	. 32	31	27	27	38
Source	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP ^(1,2)	AEP(1.2)	AEP(1,2)
1.4								

Notes:

AEP Philip Sporn Electric Generating Plant Fly Ash Facility - Engineering Report, 1998 AEP Philip Sporn Power Plant Fly Ash Disposal Facility - Stability Analysis, 2009 -0.0040

Gmax derived from shear wave velocities from cross hole measurements
Cyclic Number Function for fly ash based on data prepared by Ohio State University (OSU)
Cyclic Number Function for other materials based on functions built into QUAKE/W computer program (QUAKE)
Damping Ratios From:

- Kalinski Report

- Seed Idriss (SHAKE91 Users Manual)

- Kokusho (Geotchnical Earthquake Engineering by Kuo Towhata)



V-4 [SPORN VIBRATION FESM SLOPE STABILITY ANALYSIS SUMMARY_5-27-10]

#### SLOPE STABILITY ANALYSIS RESULTS

Graphical output from the FESM slope stability analyses are provided in this appendix. Specifically, the results show the critical slip surface and corresponding safety factor for each of the modeled conditions. The slope stability analysis results are tabulated in Table V-4.

		TABLE V-4 SUMMARY OF FESM STAB		
Critical Section	Analysis Method	Rail Induced Vibration Loading Condition	Slope and Slip Surface Condition	Stability Factor
Bottom Ash		Location A (Exterior Toe)	Downstream (Shallow)	4.06
Disposal Facility	FESM	(11-11-09 12:12 pm Train)	Downstream (Deep)	4.25
Section A-A	LESIM	Location B (Crest)	Upstream (Shallow)	2.68
Section A-A		(11-11-09 12:12 pm Train)	Upstream (Deep)	2.72
The Alexander		Location C (Exterior Toe)	Downstream (Shallow)	2.66
Fly Ash	FESM	(11-11-09 12:12 pm Train)	Downstream (Deep)	2.68 2.72 2.66 2.75
Disposal Facility Section H-H	LESM	Location D (Crest)	Upstream (Shallow)	1.78
Section II-II		(11-11-09 12:12 pm Train)	Upstream (Deep)	2.12

#### **SUMMARY OF RESULTS**

GA used *QUAKE/W* to perform finite element stress analyses for Sections A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike. Given the material parameters and railway induced loadings, *QUAKE/W* analyses were performed to delineate potential liquefaction zones. As shown in the liquefaction analysis results provided in this appendix; for the measured railway-induced vibrations, no liquefaction zones are predicted for Section A-A of the Bottom Ash Disposal Facility Western Dike or for Section H-H of the Fly Ash Disposal Facility Western Dike. It should be noted that vibration monitoring conducted at the crest and at the downstream bench of the Fly Ash Disposal Facility Eastern Dike (i.e., along Section K-K) yielded non-detectable vibration levels due to rail traffic during three monitoring events (i.e., on November 11, 2009; January 6, 2010; and January 7, 2010). Correspondingly, we believe that liquefaction of the fly ash material under the raised Eastern Dike of the Fly Ash Disposal Facility, due to railway induced ground vibration, is improbable.

GA used *SLOPE/W* to perform FESM stability analyses for Sections A-A of the Bottom Ash Disposal Facility Western Dike and Section H-H of the Fly Ash Disposal Facility Western Dike. The *SLOPE/W* program uses the Newmark Deformation Analysis Method to analyze the stability at specified time steps during a vibration event. The stresses within the western dikes for each time step were calculated by the associated *QUAKE/W* analysis. As shown in Table V-4, the FESM stability factors equal or exceed 2.68 for the Bottom Ash Disposal Facility Section A-A and 1.78 for the Fly Ash Disposal Facility Section H-H for the shallow-seated slip surface



conditions. Moreover, the FESM stability factors exceed 2.72 for the Bottom Ash Disposal Facility Section A-A and 2.12 for the Fly Ash Disposal Facility Section H-H for the deep-seated (global) slip surface conditions. Based on the results obtained in our FESM stability assessment, we believe that railway induced vibrations will not have a significant/consequential impact on the slope stability of the dikes for the Bottom Ash and Fly Ash Disposal Facilities.



# BOTTOM ASH DISPOSAL FACILITY SECTION A-A FESM SLOPE STABILITY ANALYSIS RESULTS

Title: Sporn Bottom Ash Disposal Facility
Comments: FESM - Location A (Exterior Toe)
Railway Induced Vibration Loadings
Down Stream Shallow Failure Surface
File Name: BAP_A-A_Slope-DS_Shallow.gsz
Date: 5/3/2010



# **Newmark Deformation**

ieport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: FESM - Location A (Exterior Toe) Railway Induced Vibration Loadings Down Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 165 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 7:31:40 PM

File Name: BAP_A-A_Slope-DS_Shallow.gsz

Directory: E:\Final Analysis Files\BAP_A-A GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 8:03:36 PM

## Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

# Analysis Settings

#### Newmark Deformation

Kind: SLOPE/W

Parent: Bottom Ash Pond A-A

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source: Parent Analysis** 

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01
Minimum Slip Surface Depth: 1 ft
Optimization Maximum Iterations: 2000
Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5  $^{\circ}$  Resisting Side Maximum Convex Angle: 1  $^{\circ}$ 

#### **Materials**

#### Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

#### Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

#### Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

#### Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

## Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

## Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

#### Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Silty Clay (1)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf Phi: 36 °

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

## Riprap (12)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (42, 584) ft

Left-Zone Right Coordinate: (61, 584.11765) ft

Left-Zone Increment: 6 Right Projection: Range

Right-Zone Left Coordinate: (96.63839, 592.14123) ft

Right-Zone Right Coordinate: (119, 593) ft

Right-Zone Increment: 6
Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

## Regions

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Clayey Sand (7)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Gravelly Sand (6)	46,40,25,26,27,47	85.5

## Points

11117	X (ft)	Y (ft)
Point 1	0	500
Point 2	335	500
ARREST CO. LANCE CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTR		e kanalinensama
Point 3	325	537
Point 4	335	1
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	27	586
Point 11	39	583
Point 12	51	575
Point 13	67	566.5
Point 14	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
Point 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
Point 32	99	593
Point 33	129.5	593
Point 34	184	575
Point 35	240	570
Point 36	8	586
Point 37	52	583
Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25
. 0.1116 3.5	~~	

Point 46	93.5	591
Point 47	143.5	591

# Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	486	4.06	(63.275, 681.586)	97.495	(103.991, 593)	(61, 584.118)

Slices of Slip Surface: 486

2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4	186 186 186 186 186	61.727275 63.18182 64.636365 66.09091	584.10605 584.0938	0	132,712	00 10001	
3     4       4     4       5     4       6     4       7     4       8     4       9     4       10     4       11     4       12     4       13     4       14     4       15     4       16     4	186 186 186	64.636365	ļ	1 0	1	96.420914	0.1
4 4 4 5 4 6 4 6 4 6 4 6 6 4 6 6 6 6 6 6	186 186		E044030	0	126.4312	91.857646	0.1
5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4	186	66.09091	584.1033	0	122.17749	88.767139	0.1.
6 4: 7 4: 8 4: 9 4: 10 4: 11 4: 12 4: 13 4: 14 4: 15 4: 16 4:			584,1345	0	118.46185	86.067573	0.1
7 4: 8 4: 9 4: 10 4: 11 4: 12 4: 13 4: 14 4: 15 4:	186	67.545455	584.18735	0	114.04979	82.862026	0.1
8 44 9 44 10 44 11 44 12 48 13 48 14 48 15 48 16 48		69	584.262	0	120.11868	87.271328	0.1
9 44 10 44 11 48 12 48 13 48 14 48 15 48 16 48	186	70.454545	584.3585	0	133.8631	97.257235	0.1
10 44 11 48 12 48 13 48 14 48 15 48	186	71.90909	584.47685	0	141.86291	103.06944	0.1
11 48 12 48 13 48 14 48 15 48 16 48	186	73.363635	584.61715	0	145.45992	105.68282	0.1
12     48       13     48       14     48       15     48       16     48	186	74.81818	584.77955	0	145.91275	106.01182	0.1
13     48       14     48       15     48       16     48	86	76.272725	584.9641	0	144.40131	104.91369	0.1
14     48       15     48       16     48	86	77.666665	585.1614	0	146.39111	106.35937	0.1
15 48 16 48	86	79	585.36985	0	167.88772	121.97757	0.1
1.6 48	86	80.333335	585.5973	0	188.06356	136.63618	0.1
MOTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTR	86	81.666665	585.84385	0	206.55368	150.07003	0.1
***************************************	86	83	586.1096	0	223.10133	162.0926	0.1
17   48	86	84.333335	586.3948	0	237.52021	172.56853	0.1
18 48	.86	85.82648	586.7388	0	250.8599	182.26039	0.1
19 48	86	87.23972	587.0841	0	255.17381	172.11691	0.1
20 48	86	88.41324	587.3895	0	257.80716	173.89313	0.1
21 48	86	89.75	587.7577	0	258.46195	174.33478	0.1
22   48	86	91.25	588.19395	0	256.60872	173.08477	0.1
23 48	86	92.75	588.6565	0	251.96996	169.95588	0.1
24 48	86	94.398915	589.1972	0	243.63425	164.33338	0.1
25   48	86	95.91486	589.7192	0	238.41867	160.81542	0.1
26 48	86	97.148915	590.16705	0	234.80978	158.3812	0.1
27 48	86	98.38297	590.63385	0	225.41613	152.0451	0.1
28 48	86	99.161615	590.936	0	216.47537	146.01448	0.1
29   48	86	100.10127	591.3174	0	231.2146	167.98724	0.1
30   48		101.6573	591.968	0	258.67814	187.94067	0.1
31   48	86	1					

Title: Sporn Bottom Ash Disposal Facility
Comments: FESM - Location A (Exterior Toe)
Railway Induced Vibration Loadings
Down Stream Deep Failure Surface
File Name: BAP_A-A_Slope-DS_Deep.gsz
Date: 5/3/2010



Report generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

## File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: FESM - Location A (Exterior Toe) Railway Induced Vibration Loadings Down Stream Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 167 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 8:17:20 PM

File Name: BAP_A-A_Slope-DS_Deep.gsz

Directory: E:\Final Analysis Files\BAP_A-A GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 8:32:36 PM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## **Analysis Settings**

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Bottom Ash Pond A-A

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

PWP Conditions Source: Parent Analysis

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 1 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

## **Materials**

## Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

#### Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

#### Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

## Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

#### Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

#### Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Silty Clay (1)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B; 18 °

## Riprap (12)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (29, 585.5) ft Left-Zone Right Coordinate: (60, 584) ft

Left-Zone Increment: 6 Right Projection: Range

Right-Zone Left Coordinate: (108, 593) ft Right-Zone Right Coordinate: (129.5, 593) ft

Right-Zone Increment: 6
Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

## Regions

	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Clayey Sand (7)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Gravelly Sand (6)	46,40,25,26,27,47	85.5

## **Points**

	X (ft)	Y (ft)
Point 1	0	500
Point 2	335	500
Point 3	0	537
Point 4	335	537
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	27	586
Point 11	39	583
Point 12	51	575
Point 13	67	566.5
Point 14	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
Point 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
Point 32	99	593
Point 33	129.5	593
Point 34	184 240	575 570
Point 35	8	
Point 36 Point 37	52	586 583
Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25
	~ **	

Point 46	93.5	591
Point 47	143.5	591

# Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	467	4.25	(78.153, 619.683)	40.035	(108, 593)	(60, 584)

Slices of Slip Surface: 467

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1.	467	60.754865	583.63565	0	94.071581	68.347005	0.1
2	467	62.328745	582.9188	0	199.09944	155.55353	0.1
3	467	63.96678	582.25585	0	259.4939	202.73886	0.1
4	467	65.604815	581.675	0	313.9366	245.27415	0.1
5	467	67.24285	581.17255	0	362.96559	283.5798	0.1
6	467	68.880885	580.74545	0	407.1413	318.09365	0.1
7	467	70.518915	580.3913	0	447.00977	349.24231	0.1
8	467	72.15695	580.1081	0	483.13273	377.46466	0.1
9	467	73.65465	579.90725	0	523.89385	314.78718	0.1
10	467	75	579.7778	0	566.62148	340.46053	0.1
11	467	76.333335	579.69475	0	603.12592	362.39461	0.1
12	467	77.25	579.65875	0	625.34079	375.74265	0.1
13	467	78.243985	579.6548	0	645.34275	387.76104	0.1
14	467	79.73195	579.68585	0	670.26655	402.73677	0.1
15	467	81.219915	579.7724	0	688.24291	413.53806	0.1
16	467	82.70788	579.9148	0	699.27595	420.16738	0.1
17	467	84.22593	580.1188	0	701.28394	547.90306	0.1
18	467	85.5	580.33095	0	696.26985	543.98563	0.1
19	467	86.75	580.58925	0	688.93895	538.2581	0.1
20	467	88.25	580.9497	0	678.46098	530.07181	0.1
21	467	89.75	581.3722	0	666.27702	520.55266	0.1
22	467	91.25	581.8589	0	652.83881	510.05358	0.1
23	467	92.75	582.41235	0	638.51038	498.85898	0.1
24	467	94.416665	583.11375	0	621.79068	485.79612	0.1
25	467	96.25	583.98615	0	596.79897	466.27046	0.1
26	467	98.083335	584.9773	0	561.74514	438.8834	0.1
27	467	99.77595	586.00185	0	526.1106	411.04265	0.1
28	467	101.52775	587.20225	0	468.82362	316.22553	0.1
29	467	103.47945	588.70225	0	388.23216	261.8659	0.1
30	467	105.2694	590.25	0	272.29712	183.66673	0.1
31	467	107.04175	592	0	183.5753	133.37526	0.1

Title: Sporn Bottom Ash Disposal Facility
Comments: FESM - Location B (Crest)
Railway Induced Vibration Loadings
Up Stream Shallow Failure Surface
File Name: BAP_A-A_Slope-US_Shallow.gsz
Date: 5/3/2010



leport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

## File information

Title: Sporn Bottom Ash Disposal Facility

Comments: FESM - Location B (Crest) Railway Induced Vibration Loadings Up Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 166 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 7:20:16 PM

File Name: BAP_A-A_Slope-US_Shallow.gsz

Directory: E:\Final Analysis Files\BAP_A-A GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 7:37:36 PM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## **Analysis Settings**

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Bottom Ash Pond A-A

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source: Parent Analysis** 

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 1 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8
Ending Optimization Points: 16
Complete Passes per Insertion: 1
Driving Side Maximum Convex Angle: 5 °

Resisting Side Maximum Convex Angle: 1 °

## **Waterials**

## Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

## Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

## Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 " Phi-B: 20 "

## Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 19 °

## Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

## Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Silty Clay (1)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

## Riprap (12)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (119.5, 593) ft Left-Zone Right Coordinate: (140, 591.5) ft

Left-Zone Increment: 6 Right Projection: Range

Right-Zone Left Coordinate: (175, 579.5) ft Right-Zone Right Coordinate: (193, 575) ft

Right-Zone Increment: 6 Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

## Regions

	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Clayey Sand (7)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Gravelly Sand (6)	46,40,25,26,27,47	85.5

## Points

**************************************	X (ft)	Y (ft)
Point 1	10	500
Point 2	335	500
Point 3	0	537
Point 4	335	537
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	2.7	586
Point 11	39	583
Point 12	51.	575
Point 13	67	566.5
Point 14	83.5	557,5
Point 15	158.5	557.5
Point 16	300	557.5
Point 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
Point 32	99	593
Point 33	129.5	593
Point 34	184	575
Point 35	240	570
Point 36	8	586
Point 37	52	583
Point 38	59	583
Point 39	77.5	585
Point 40	89	589.5
Point 41	85	588
Point 42	77	586
Point 43	60	584
Point 44	39	584
Point 45	30	585.25

 Point 46	93.5	591
Point 47	143.5	591

# Critical Slip Surfaces

Slip Surface		FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	466	2.68	(169.939, 621.781)	42.583	(140, 591.5)	(175, 579.5)

Slices of Slip Surface: 466

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	466	140.25715	591.25	0	-26.485719	-19.243002	0.1
2	466	141.34125	590.25	0	120.38016	81.197441	0.1
3	466	142.8341	588.9502	0	273.97966	199.05788	0.1
4	466	144.09375	587.94685	0	321.02098	233.2354	0.1
5	466	145.28125	587.0715	0	365.44787	265.51342	0.1
6	466	146.46875	586.2574	0	407.784	296.27242	0.1
7	466	147.65625	585.50045	0	448.16593	325.6116	0.1
8	466	148.84375	584.7971	0	485.77458	352.93589	0.1
9	466	150.03125	584.14435	0	513.93785	373.39771	0.1
10	466	151.21875	583.53965	0	533.44769	387.57243	0.1
11	466	152.40625	582.9807	0	543.66052	394.99249	0.1
12	466	153.57145	582.47445	0	544.06196	395.28415	0.1
13	466	154.7143	582.0177	0	534.55437	388.37648	0.1
14	466	155.85715	581.59865	0	514.68736	373.94226	0.1
1.5	466	157	581.2161	0	483.9991	351.64593	0.1
16	466	158.14285	580.86905	0	487.29797	354.0427	0.1
1.7	466	159.2857	580.55665	0	526.35413	382.41866	0.1
18	466	160.42855	580.27805	0	560.99891	407.58957	0.1
19	466	161.625	580.02265	0	592.53721	430.50348	0.1
20	466	162.875	579.79305	0	620.45587	450.78757	0.1
21	466	164.125	579.60175	0	642.84129	467.05154	0.1
22	466	165.375	579.4482	0	658.08176	478.12438	0.1
23	466	166.5625	579.33605	0	669.96292	486.75655	0.1
24	466	167.6875	579.2615	0	678.86232	493.22235	0.1
25	466	168.8125	579.21685	0	685.591	498.11102	0.1
26	466	169.9375	579.20195	0	690.20444	501.46288	0.1
27	466 .	171.0625	579.21675	0	692.75417	503.31537	0.1
28	466	172.1875	579.26135	0	693.29851	503.71085	0.1
29	466	173.3125	579.3358	0	691.87194	502.67439	0.1
30	466	174.4375	579.44025	0	688.51645	500.23648	0.1

Title: Sporn Bottom Ash Disposal Facility Comments: FESM - Location B (Crest) Railway Induced Vibration Loadings Up Stream Deep Failure Surface File Name: BAP_A-A_Slope-US_Deep.gsz Date: 5/3/2010



leport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

## File Information

Title: Sporn Bottom Ash Disposal Facility

Comments: FESM - Location B (Crest) Railway Induced Vibration Loadings Up Stream Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 167 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 8:03:02 PM

File Name: BAP_A-A_Slope-US_Deep.gsz

Directory: E:\Final Analysis Files\BAP_A-A GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 8:20:38 PM

## Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## Analysis Settings

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Bottom Ash Pond A-A

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

PWP Conditions Source: Parent Analysis

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 5 ft

Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

## Materials

## Fly Ash (2)

Model: Mohr-Coulomb Unit Weight: 139 pcf

Unit Wt. Above Water Table: 134 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 18 °

#### Bottom Ash (3)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 80 pcf

Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (4)

Model: Mohr-Coulomb Unit Weight: 105 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 20 °

#### Bottom Ash (5)

Model: Mohr-Coulomb Unit Weight: 80 pcf

Unit Wt. Above Water Table: 62 pcf

Cohesion: 0.1 psf

Phi: 38 ° Phi-B: 20 °

## Gravelly Sand (6)

Model: Mohr-Coulomb Unit Weight: 115 pcf

Unit Wt. Above Water Table: 111 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

## Clayey Sand (7)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 104 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 19°

## Road Material (8)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Silty Clay (1)

·Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf Phi: 36 °

Phi: 36 ° Phi-B: 20 °

## Clayey Sand (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand (10)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 29 ° Phi-B: 15 °

## Sand and Gravel (11)

Model: Mohr-Coulomb Unit Weight: 123 pcf Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 18 °

## Riprap (12)

Model: Mohr-Coulomb Unit Weight: 145 pcf Cohesion: 0.1 psf

Phi: 36 ° Phi-B: 20 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (99, 593) ft Left-Zone Right Coordinate: (129.5, 593) ft

Left-Zone Increment: 6 Right Projection: Range

Right-Zone Left Coordinate: (208.5, 575) ft Right-Zone Right Coordinate: (245.5, 570) ft

Right-Zone Increment: 6 Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 589) ft Right Coordinate: (335, 545) ft

## Regions

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Material	Points	Area (ft²)
Region 1	Sand (10)	3,4,5,6	8375
Region 2	Sand and Gravel (11)	6,5,2,1	4020
Region 3	Clayey Sand (9)	7,8,4,3	2680
Region 4	Silty Clay (1)	9,36,10,45,11,12,13,14,15,16,17,8,7	5834.125
Region 5	Fly Ash (2)	13,18,15,14	688.5
Region 6	Bottom Ash (5)	12,19,20,18,13	680
Region 7	Clayey Sand (4)	19,21,22,20	301.25
Region 8	Bottom Ash (5)	21,23,24,22	273
Region 9	Bottom Ash (5)	11,12,19,21,23,39,38,37	243.875
Region 10	Clayey Sand (7)	23,25,26,24	81
Region 11	Bottom Ash (3)	26,27,28,29,34,30,35,31,16,15,18,20,22,24	2927.75
Region 12	Riprap (12)	25,40,41,42,43,44,45,11,37,38,39,23	59.875
Region 13	Road Material (8)	32,46,47,33	80.5
Region 14	Gravelly Sand (6)	46,40,25,26,27,47	85.5

## Points

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	X (ft)	Y (ft)
Point 1	0	500
Point 2	335	500
Point 3	10	537
Point 4	335	537
Point 5	335	512
Point 6	0	512
Point 7	0	545
Point 8	335	545
Point 9	0	589
Point 10	2.7	586
Point 11	39	583
Point 12	51	575
Point 13	67	566.5
Point 14	83.5	557.5
Point 15	158.5	557.5
Point 16	300	557.5
Point 17	334.5	557.5
Point 18	145	566.5
Point 19	65.5	575
Point 20	133	575
Point 21	73	580
Point 22	126	580
Point 23	86	586.5
Point 24	117	586.5
Point 25	90.5	589.5
Point 26	113.5	589.5
Point 27	153	589.5
Point 28	161	587
Point 29	166	584
Point 30	230	575
Point 31	280	570
Point 32	99	593
Point 33	129.5	593
Point 34	184	575
Point 35	240	570
Point 36	8	586
Point 37	52 E0	583
Point 38	59 776	583 585
Point 39 Point 40	77.5	
	89 85	589.5
Point 41	85 77	588
Point 42 Point 43	77 60	586
······································	60	584
Point 44	39	584
Point 45	30	585.25

Point 46	93.5	591
Point 47	143,5	591

# **Critical Slip Surfaces**

į	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	468	2.72	(178.486, 625.634)	58.861	(129.5, 593)	(208.5, 575)

Slices of Slip Surface: 468

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	468	130.1965	592	0	-59.253752	-43.050371	0.1
2	468	131.4573	590.25	0	127.20839	85.803145	0.1
3	468	133.4564	587.79265	0	336.0944	244.18687	0.1
4	468	136.326	584.61075	0	478.14785	347.39475	0.1
5	468	139.1956	581.8487	0	598.95429	435.16576	0.1
6	468	142.0652	579.4302	0	697.38458	506.67955	0.1
7	468	144.6875	577.46595	0	857.8771	623.28419	0.1
8	468	147.0625	575.88265	0	981.42837	713.04945	0.1
9	468	149.4375	574.45855	0	1083.5821	787.26851	0.1
10	468	151.8125	573.1806	0	1171.2392	850.95507	0.1
11	468	154,33335	571.97655	0	1252.7138	910.14987	0.1
1.2	468	157	570.85345	0	1321,999	960.48849	0.1
13	468	159.66665	569.8804	0	1353.1058	983.0889	0.1
14	468	162.25	569.0715	0	1363.1516	990.38759	0.1
1.5	468	164.75	568.41265	0	1365.7593	992.28223	0.1
16	468	167.2857	567.8633	0	1361.6935	989.3282	0.1
17	468	169.85715	567.4234	0	1379.7884	1002.475	0.1
18	468	172.4286	567.09975	0	1367.5352	993.57247	0.1
19	468	175	566.8904	0	1340.3971	973.85552	0.1
20	468	177.5714	566.7941	0	1299.0432	943.81011	0.1
21	468	180.14285	566.81035	0	1242.4741	902.71027	0.1
22	468	182.7143	566.9392	0	1209.3056	878,61198	0.1
23	468	185.3611	567.1919	0	1197.4862	870.02463	0.1
24	468	188.0833	567.577	0	1182.2059	858.92287	0.1
25	468	190.80555	568.0934	0	1164.2246	845.85868	0.1
26	468	193.5278	568.7447	0	1141.1109	829.06556	0.1
27	468	196.25	569.5356	0	1112.2987	808.13232	0.1
28	468	198.9722	570.47205	0	1078.1415	783.31565	0.1
29	468	201.69445	571.5617	0	1038.2906	754.36231	0.1
30	468	204.41.67	572.8141	0	996.51714	724.01208	0.1
31	468	207.1389	574.24115	0	949.04593	689.52223	0,1

# FLY ASH DISPOSAL FACILITY SECTION H-H FESM SLOPE STABILITY ANALYSIS RESULTS

Title: Sporn Fly Ash Disposal Facility
Comments: FESM - Location C (Exterior Toe)
Railway Induced Vibration Loadings
Down Stream Shallow Failure Surface
File Name: FAP_H-H_Slope-DS_Toe Accel.gsz
Date: 5/3/2010



leport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

## File Information

Title: Sporn Fly Ash Disposal Facility

Comments: FESM - Location C (Exterior Toe) Railway Induced Vibration Loadings Down Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 169 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 8:41:34 PM

File Name: FAP_H-H_Slope-DS_Toe Accel.gsz

Directory: E:\Final Analysis Files\FAP_H-H GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 9:04:20 PM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## **Analysis Settings**

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Dynamic QUAKE/W

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source: Parent Analysis** 

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: Yes

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

#### Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 5 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

## **Materials**

## Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

## Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

## Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 " Phi-B: 17 "

## Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

## Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

## Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

#### Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

## Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (47.90981, 590.5) ft Left-Zone Right Coordinate: (75, 591.30719) ft

Left-Zone Increment: 5 Right Projection: Range

Right-Zone Left Coordinate: (128.0816, 611) ft Right-Zone Right Coordinate: (143, 611) ft

Right-Zone Increment: 5 Radius Increments: 10

## Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

## Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Sifty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

## Points

1163		Y
	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	1.39	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	170	600
COMPANY TO A STREET TO A COMPANY TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STREET TO THE STRE	1	

Point 25	128	611
Point 26	147	611
Point 27	<b>1</b> 54	608
Point 28	<b>1</b> 59	608
Point 29	193	589
Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31.	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	107	600
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

# Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	355	2.66	(75.638, 687.771)	96.466	(134.049, 611)	(75, 591.307)

## Slices of Slip Surface: 355

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	355	75.751195	591.3081	0	284.64646	222.39019	0
2	355	77.253585	591.32155	0	322.85372	252.24097	0
3	355	79.003585	591.369	0	347.63371	243.41575	0.1
4	355	81.001195	591.4595	0	388.79775	272.23912	0.1
5	355	82.86595	591.5802	0	418.97026	293.36613	0.1
6	355	84.59785	591.72605	0	416.63337	291.72983	0.1
7	355	86.32975	591.9034	0	391.51011	274.13833	0.1
8	355	88.10062	592.1179	0	381.81666	298.30787	0
9	355	89.910465	592.3712	0	390.71273	305.25824	0
10	355	91.72031	592.6596	0	419.10351	327.43955	0
11	355	93.58057	592.99345	0	474.21604	332.04965	0.1
12	355	95.491255	593.37525	0	549.60758	384.83937	0.1
13	355	97.40194	593.79745	0	618.73647	433.24394	0.1
14	355	99.31264	594.2606	0	657.84934	460.631.07	0.1
15	355	101.2233	594.7653	0	683.61809	478.67454	0.1
1.6	355	103.13395	595.3122	0	704.68144	493.42326	0.1
17	355	105.04465	595.9021	0	721.3706	505.10913	0.1
18	355	106.5	596.37675	0	731.61234	512.28048	0.1
19	355	108	596.90175	0	706.38873	494.61871	0.1
20	355	110.0785	597.67015	0	655.8395	459.22377	0.1
21	355	112.23555	598.5247	0	613.37536	429.49005	0.1

22	355	114.3926	599.4402	0	588.48952	412.06479	0.1
23	355	116.54965	600.4185	0	572.14853	400.62271	0.1
24	355	118.7067	601.4618	0	553.6596	387.67663	0.1
25	355	120.81205	602.5443	0	506.71926	329.06733	0.1
26	355	122.86575	603.6652	0	461.2928	299.56705	0.1
27	355	124.91945	604.8521	0	426.48823	276.96469	0.1
28	355	126.97315	606.1079	0	399.09242	259.17364	0.1
29	355	129	607.4175	0	353.58683	229.62197	0.1
30	355	131.3554	609.0408	0	273.07778	177.33878	0.1
31	355	133.3799	610.5	0	185.32641	125.00424	0.1

Title: Sporn Fly Ash Disposal Facility
Comments: FESM - Location C (Exterior Toe)
Railway Induced Vibration Loadings
Down Stream Deep Failure Surface
File Name: FAP_H-H_Slope-DS_Toe Accel.gsz
Date: 5/3/2010



teport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

## File Information

Title: Sporn Fly Ash Disposal Facility

Comments: FESM - Location C (Exterior Toe) Railway Induced Vibration Loadings Down Stream Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 167 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 11:30:08 AM

File Name: FAP_H-H_Slope-DS_Toe Accel.gsz

Directory: E:\Final Analysis Files\FAP_H-H GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 11:45:02 AM

## **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

## Analysis Settings

#### Newmark Deformation

Kind: SLOPE/W

Parent: Dynamic QUAKE/W

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source: Parent Analysis** 

SlipSurface

Direction of movement: Right to Left

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: Yes

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 10 sec # of Steps: 10240

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 10 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

## Materials

## Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34° Phi-B: 18°

## Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

## Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

## Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

#### Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

#### Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (31, 590) ft

Left-Zone Right Coordinate: (64, 590.77358) ft

Left-Zone Increment: 5 Right Projection: Range

Right-Zone Left Coordinate: (134, 611) ft Right-Zone Right Coordinate: (147, 611) ft

Right-Zone Increment: 5 Radius Increments: 10

#### Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

#### Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973,49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

#### Points

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	310	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	1.39	591
Point 14	189	591
Point 15	106	602
Point 16	137	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	<b>1</b> 67	602
Point 23	148	600
Point 24	170	600

Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589
Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	107	600
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

#### Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	195	2.75	(89.238, 632.496)	61.632	(147, 611)	(44.1974, 590.426)

#### **Slices of Slip Surface: 195**

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	195	45.348695	589.2571	0	474.46624	320.03152	0.1
2	195	47.641025	587.04425	0	669.70015	451.71845	0.1
3	195	49.141025	585,69245	0	793.82407	476.97762	0.1
4	1.95	51.3882	583.91385	0	1032.4603	620.36472	0.1
5	195	55,1646	581.18885	0	1411.7303	848.25317	0.1
6	195	58.941005	578.86815	0	1721.5239	1034.3959	0.1
7	195	62.71741	576.9007	0	1991.1263	1196.3894	0.1
8	195	66.17134	575.3678	0	2222.2999	1132.3183	0.1
9	195	69.302805	574.2002	0	2413.5994	1229.7903	0.1
10	195	72.43427	573.22095	0	2609.3296	1329.5198	0.1
11	195	75	572.5396	0	2753.4299	1402.9426	0.1
12	195	77.5	572.011	0	2874.0821	1464.418	0.1
13	195	80.5	571.50505	0	3008.9453	1533.1342	0.1
14	195	83.5	571.1499	0	3138.5347	1599.1633	0.1
15	195	86.5	570.94285	0	3244.7254	1653.2702	0.1
16	195	89.5	570.8825	0	3327.9367	1695.6685	0.1
17	195	92.875	570.9998	0	3411.3721	1738.1809	0.1
18	195	96.625	571.33715	0	3470.244	1768.1776	0.1
19	195	100.375	571.9083	0	3491.1086	1778.8087	0.1
20	195	104.125	572.71995	0	3472.5924	1769.3742	0.1
21	195	106.5	573.3328	0	3443.903	1754.7562	0.1

file:///F|/Philip%20Sporn/PDF%20Analysis%20Files/HH/Deep%20Stability/fap_h-h_slope-ds_deep.html[5/4/2010 3:12:17 PM]

22	195	108	573.7983	0	3413.7009	1739.3675	0.1
23	195	111.435	575.05895	0	3300.7106	1681.796	0.1
24	195	115.63625	576.8377	0	3123.2615	1876.6449	0.1
25	195	119.16875	578.65735	0	2935.4014	1763.7671	0.1
26	195	122.70125	580.7822	0	2680.1674	1610.407	0.1
27	195	126.23375	583.25205	0 -	2385.5102	1433.3591	0.1
28	195	128.84675	585.2895	0	2143.6187	1288.0161	0.1
29	195	129.84675	586.1342	0	2030.7327	1369.7465	0.1
30	195	132.4039	588.6342	0	1588.5956	1071.5212	0.1
31	195	135.9039	592.2716	0	1133.122	793.42059	0.1
32	195	139	596.2922	0	869.89263	543.56924	0.1
33	195	143	602.643	0	500.92104	313.0102	0.1
34	195	145.80895	608.1224	0	260.43552	169.1288	0.1
35	195	146.80895	610.5	0	164.66091	111.06519	0.1

Title: Sporn Fly Ash Disposal Facility
Comments: FESM - Location D (Crest)
Railway Induced Vibration Loadings
Up Stream Shallow Failure Surface
File Name: FAP_H-H_Slope-US_Crest Accel.gsz
Date: 5/3/2010



leport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Fly Ash Disposal Facility

Comments: FESM - Location D (Crest) Railway Induced Vibration Loadings Up Stream Shallow Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 169 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 10:39:44 AM

File Name: FAP_H-H_Slope-US_Crest Accel.gsz

Directory: E:\Final Analysis Files\FAP_H-H GA\Shallow\

Last Solved Date: 5/3/2010 Last Solved Time: 10:59:48 AM

#### **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

#### Analysis Settings

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Dynamic QUAKE/W

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source:** Parent Analysis

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit

Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: Yes

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 5.499 sec # of Steps: 5631

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 5 ft Optimization Maximum Iterations: 2000

Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

#### **Materials**

#### Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

#### Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

#### Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 15 °

#### Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

#### Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (141.5, 611) ft Left-Zone Right Coordinate: (159, 608) ft

Left-Zone Increment: 5 Right Projection: Range

Right-Zone Left Coordinate: (193.1477, 588.98154) ft

Right-Zone Right Coordinate: (232, 588) ft

Right-Zone Increment: 6
Radius Increments: 10

#### Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

#### Regions

ALLEN DE COMMUNICATION DE L'ARTE L'ARTES COMPLES PROPERTIES DE COMPLES PROPERTIES DE COMPLES PROPERTIES DE COMP	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

#### **Points**

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	31.0	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 11	82	592
Point 12	137	591
Point 13	139	591.
Point 14	189	591
Point 15	106	602
Point 16	1.37	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	170	600

Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589
Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31.	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	107	600
Point 39	1.09	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

#### **Critical Slip Surfaces**

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	159	1.78	(189.993, 639.776)	50.892	(148.564, 610.218)	(193.148, 588.981)

ilices of Slip Surface: 159

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	159	148.6421	610.10905	0	162.50377	109.61018	0.1
2	159	148.86015	609.80805	0	173.56961	112.71742	0.1
3	159	149.83335	608.54455	0	202.07218	131.22721	0.1
4	159	151.5	606.50875	0	246.07613	159.80371	0.1
5	1.59	153.16665	604.67035	0	281.88175	183.05615	0.1
6	159	154,94495	602.8981	0	310.09631	201.3789	0.1
7	159	156.47875	601.4846	0	443.07922	310.24741	0.1
8	159	157.65645	600.4846	0	675.69428	473.12623	0.1
9	159	158.62265	599.7046	0	805.26342	563.85151	0.1
10	159	159.8	598.81945	0	869.51491	608.84089	0.1
11	1.59	161.4	597.68625	0	952.55328	666.98499	0.1
12	1.59	163	596.64215	0	1020.6785	714.68676	0.1
13	159	164.6	595.6808	0	1074.7243	752.53005	0.1
14	159	166.2	594.7969	0	1115.6518	781.18778	0.1
15	159	167.75	594.0092	0	1143.5643	800.73237	0.1
16	159	169.25	593.3099	0	1160.3026	812.4526	0.1
17	159	170.68365	592.69475	0	1177.4832	824.48262	0.1
18	159	172.05095	592.1568	0	1190.1136	833.32653	0.1
19	159	173,41825	591.6637	0	1199.3232	839.77512	0.1
20	159	174.78555	591.2141	0	1205.2935	843.95563	0.1
21	159	176.2209	590.78865	0	1228.9742	828.95354	0.1

 $file: ///F|/Philip\%20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Files/HH/Shallow\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{thm:pm20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Sporn/PDF\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20A$ 

:	1		t .	1	1	1	i i
22	159	177.7243	590.3906	0	1266.0058	853.93171	0.1
23	159	179.2277	590.04115	0	1296.4809	874.48738	0.1
24	159	180.73115	589.7393	0	1338.8804	903.08626	0.1
25	<b>1</b> 59	182.2346	589.4842	0	1369.3704	923.65202	0.1
26	159	183.738	589.2751	0	1389.4518	937.19708	0.1
27	159	185.2414	589.1115	0	1400.4422	944.61022	0.1
28	159	186.74485	588.99295	0	1403.8518	946.91003	0,1
29	159	188.2483	588.9191	0	1401.0401	945.01346	0.1
30	159	189.66665	588.88905	0	1392.8711	939.50342	0.1
31	159	191	588.898	0	1380.1791	930.94258	0.1
32	159	192.33335	588.9419	0	1364.0048	920.03288	0.1
33	159	193.0245	588.97405	0	1355.4562	914.26676	0.1
34	159	193.09835	588.9785	0	1355.3505	690.58557	0.1

Title: Sporn Fly Ash Disposal Facility
Comments: FESM - Location D (Crest)
Railway Induced Vibration Loadings
Up Stream Deep Failure Surface
File Name: FAP_H-H_Slope-US_Crest Accel.gsz
Date: 5/3/2010



leport generated using GeoStudio 2007, version 7.15. Copyright © 1991-2009 GEO-SLOPE International Ltd.

#### File Information

Title: Sporn Fly Ash Disposal Facility

Comments: FESM - Location D (Crest) Railway Induced Vibration Loadings Up Stream Deep Failure Surface

Created By: Seth W. Frank, E.I.

Revision Number: 173 Last Edited By: Seth Frank

Date: 5/3/2010 Time: 4:48:26 PM

File Name: FAP_H-H_Slope-US_Crest Accel.gsz
Directory: E:\Final Analysis Files\FAP_H-H GA\Deep\

Last Solved Date: 5/3/2010 Last Solved Time: 4:59:50 PM

#### **Project Settings**

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

#### **Analysis Settings**

#### **Newmark Deformation**

Kind: SLOPE/W

Parent: Dynamic QUAKE/W

Method: QUAKE/W Newmark Deformation

Settings

Initial Stress: Parent Analysis

**PWP Conditions Source: Parent Analysis** 

SlipSurface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: Yes

**Tension Crack** 

Tension Crack Option: (none)

**FOS Distribution** 

FOS Calculation Option: Constant

Time

Starting Time: 0 sec Duration: 5.499 sec # of Steps: 5631

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 10 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

#### **Materials**

#### Silty Sand (1)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 34 ° Phi-B: 18 °

#### Silty Sand (2)

Model: Mohr-Coulomb Unit Weight: 112 pcf

Unit Wt. Above Water Table: 107 pcf

Cohesion: 0.1 psf

Phi: 35 ° Phi-B: 18 °

#### Gravelly Sand (3)

Model: Mohr-Coulomb Unit Weight: 110 pcf

Unit Wt. Above Water Table: 105 pcf

Cohesion: 0.1 psf

Phi: 33 ° Phi-B: 17 °

#### Silty Clay (4)

Model: Mohr-Coulomb Unit Weight: 120 pcf

Unit Wt. Above Water Table: 115 pcf

Cohesion: 0.1 psf

Phi: 32 ° Phi-B: 17 °

#### Silty Sand (5)

Model: Mohr-Coulomb Unit Weight: 131 pcf

Unit Wt. Above Water Table: 126 pcf

Cohesion: 0.1 psf

Phi: 31 ° Phi-B: 16 °

#### Sandy Silt (6)

Model: Mohr-Coulomb Unit Weight: 130 pcf

Unit Wt. Above Water Table: 125 pcf

Cohesion: 0.1 psf

Phi: 27 ° Phi-B: 14 °

#### Fly Ash (7)

Model: Mohr-Coulomb Unit Weight: 90 pcf

Unit Wt. Above Water Table: 102 pcf

Cohesion: 0.1 psf

Phi: 27° Phi-B: 15°

#### Rock Fill (9)

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 0 psf

Phi: 38 ° Phi-B: 0 °

#### Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (128, 611) ft Left-Zone Right Coordinate: (146, 611) ft

Left-Zone Increment: 5 Right Projection: Range

Right-Zone Left Coordinate: (209, 588) ft Right-Zone Right Coordinate: (242, 588) ft

Right-Zone Increment: 6 Radius Increments: 10

#### Slip Surface Limits

Left Coordinate: (0, 593) ft Right Coordinate: (310, 588) ft

#### Regions

	Material	Points	Area (ft²)
Region 1	Sandy Silt (6)	1,3,4,5,6,2	5355
Region 2	Silty Sand (5)	7,8,4,3	2085
Region 3	Silty Sand (1)	7,9,36,35,34,33,32,42,10,12,13,14,29,8	973.49995
Region 4	Silty Sand (2)	11,37,38,39,16,12,10	420
Region 5	Silty Clay (4)	16,17,18,19,20,13,12	134
Region 6	Gravelly Sand (3)	41,17,16,39	148
Region 7	Silty Sand (2)	19,20,23,24,22	51.5
Region 8	Silty Sand (1)	40,26,21,18,17,41	19
Region 9	Silty Sand (2)	13,20,23,24,14	324
Region 10	Gravelly Sand (3)	21,27,28,22,19,18	121
Region 11	Fly Ash (7)	30,31,6,5,4,8,29	2399
Region 12	Rock Fill (9)	11,10,42,15,25,40,41,39,38,37	120.4339

#### **Points**

	X (ft)	Y (ft)
Point 1	0	555
Point 2	310	555
Point 3	0	576
Point 4	218	576
Point 5	248	561
Point 6	31.0	561
Point 7	0	586
Point 8	199	586
Point 9	0	590
Point 10	76	591
Point 1.1	82	592
Point 12	137	591
Point 1.3	1.39	591
Point 14	189	591
Point 15	106	602
Point 16	1.37	602
Point 17	137	610
Point 18	145	610
Point 19	145	602
Point 20	145	597
Point 21	149	610
Point 22	167	602
Point 23	148	600
Point 24	170	600
	encomplex conference and the form consider one	

Point 25	128	611
Point 26	147	611
Point 27	154	608
Point 28	159	608
Point 29	193	589
Point 30	201	588
Point 31	310	588
Point 32	49.5	590.5
Point 33	46.5	590.5
Point 34	31	590
Point 35	15.5	592
Point 36	0	593
Point 37	91	592
Point 38	1.07	600 _.
Point 39	109	602
Point 40	130	611
Point 41	128	610
Point 42	74	590.96226

#### Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	391		(191.93, 639.025)	53.805	(146, 611)	(209, 588)

#### Slices of Slip Surface: 391

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	391	146.31265	610.5	0	160.59657	108.32375	0.1
2	391	146.81265	609.71165	0	173.88004	112.91902	0.1
3	391	148	608.00705	0	256.31804	166.45488	0.1
4	391	149.97255	605.37805	0	316.66484	205.64455	0.1
5	391	151.91765	603.08265	0	365.45026	237.32618	0.1
6	391	153.4451	601.4319	0	509.48986	356,74864	0.1
7	391	154.4447	600.4319	0	722.0131	505.55902	0.1
8	391	155.91705	599.07365	0	869.3267	608.70911	0.1
9	391	157.97235	597.31075	0	982.33502	687.83839	0.1
10	391	160	595.7366	0	1091.2183	764.07926	0.1
11	391	162	594.32935	0.	1181.7215	827.45027	0.1
12	391	164	593.0522	0	1249.0588	874.60041	0.1
13	391	166	591.8945	0	1294.8235	906.64515	0.1
14	391	167.33495	591.17215	0	1314.9288	920.72307	0.1
15	391	168.83495	590.44615	0	1388.9718	936.8733	0.1
16	391	171.06695	589.44335	0	1525.0999	1028.6929	0.1
17	391	173.20085	588.5981	0	1627.8763	1098.0164	0.1
18	391	175.33475	587.8558	()	1705.2759	1150.2231	0.1
19	391	177.4687	587.212	0	1759.5379	1186.8233	0.1
20	391	179.60265	586.663	0	1794.8675	1210.6534	0.1
21	391	181.73655	586.2059	0	1812.738	1222.7072	0.1

 $file: ///F|/Philip\%20Sporn/PDF\%20Analysis\%20Files/HH/Deep\%20Stability/fap_h-h_slope-us_crest\%20accel.html \cite{Continuous} 20Sporn/PDF\%20Analysis\%20Files/HH/Deep\%20Stability/fap_h-h_slope-us_crest\%20accel.html 0Files/HH/Deep\%20Stability/fap_h-h_slope-us_crest\%20Analysis\%20Files/HH/Deep\%20Stability/fap_h-h_slope-us_crest\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20Analysis\%20$ 

22	391	183.83625	585.84285	0	1805.8775	1085.0807	0.1
23	391	185.90175	585.5692	0	1785.4823	1072.826	0.1
24	391	187.96725	585.37645	0	1756.5748	1055.4566	0.1
25	391	190	585.2643	0	1748.374	1050.5291	0.1
26	391	192	585.2297	0	1759.7982	1057.3935	0.1
27	391	194	585.2695	0	1762.4931	1059.0127	0.1
28	391	196	585.3839	0	1757.2488	1055.8616	0.1
29	391	198	585.57335	0	1744.8351	1048.4027	0.1
30	391	199.236	585.71925	0	1726.017	1037.0956	0.1
3.1	391	200.236	585.871	0	1694.0834	863.17863	0.1
32	391	202	586.18095	0	1657.0309	844.29941	0.1
33	391	204	586.60175	0	1630.3437	830.7016	0.1
34	391	206	587.10295	0	1613.9898	822.3689	0.1
35	391	208	587.68695	0	1604.0017	817.2797	0.1

### BOTTOM ASH DISPOSAL FACILITY SECTION A-A LIQUEFACTION ANALYSIS RESULTS

Title: Sporn Bottom Ash Disposal Facility Comments: QUAKE/W Finite Element Analysis

Accelerations at Toe File Name: BAP_A-Quake_Toe Accel_Mesh.gsz

Date: 5/3/2010

## **QUAKEW MESH**



Comments: QUAKE/W Finite Element Analysis Title: Sporn Bottom Ash Disposal Facility

Accelerations at Toe File Name: BAP_A-A_Quake_Toe Accel.gsz

Date: 5/3/2010

## **QUAKE/W MESH WITH LIQUEFIED ZONES** NOTE: NO LIQUEFACTION PREDICTED

ELEMENT THAT DOES NOT LIQUEFY UNDER THE MODELED CONDITIONS ──►

ELEMENT THAT LIQUEFIES UNDER THE MODELED CONDITIONS



Comments: QUAKE/W Finite Element Analysis Title: Sporn Bottom Ash Disposal Facility

Accelerations at Crest File Name: BAP_A-A_Quake_Crest Accel_Mesh.gsz Date: 5/3/2010

## **QUAKE/W MESH**



Title: Sporn Bottom Ash Disposal Facility Comments: QUAKE/W Finite Element Analysis

Accelerations at Crest File Name: BAP_A-A_Quake_Crest Accel.gsz

Date: 5/3/2010

## **QUAKE/W MESH WITH LIQUEFIED ZONES** NOTE: NO LIQUEFACTION PREDICTED

ELEMENT THAT DOES NOT LIQUEFY UNDER THE MODELED CONDITIONS

ELEMENT THAT LIQUEFIES UNDER THE MODELED CONDITIONS



### FLY ASH DISPOSAL FACILITY SECTION H-H LIQUEFACTION ANALYSIS RESULTS

Title: Sporn Fly Ash Disposal Facility
Comments: QUAKE/W Finite Element Analysis
Accelerations at Toe Location C
File Name: FAP_H-H_Quake_Toe Accel_Mesh.gsz
Date: 5/3/2010

## QUAKE/W MESH



Title: Sporn Fly Ash Disposal Facility
Comments: QUAKE/W Finite Element Analysis
Accelerations at Toe Location C
File Name: FAP_H-H_Quake_Toe Accel.gsz
Date: 5/3/2010

# QUAKE/W MESH WITH LIQUEFIED ZONES NOTE: NO LIQUEFACTION PREDICTED

ELEMENT THAT DOES NOT LIQUEFY UNDER THE MODELED CONDITIONS

ELEMENT THAT LIQUEFIES UNDER THE MODELED CONDITIONS



Title: Sporn Fly Ash Disposal Facility
Comments: QUAKE/W Finite Element Analysis
Accelerations at Crest Location D
File Name: FAP_H-H_Quake_Crest Accel_Mesh.gsz
Date: 5/3/2010

## **QUAKE/W MESH**



Title: Sporn Fly Ash Disposal Facility
Comments: QUAKE/W Finite Element Analysis
Accelerations at Crest Location D
File Name: FAP_H-H_Quake_Crest Accel.gsz
Date: 5/3/2010

# QUAKE/W MESH WITH LIQUEFIED ZONES NOTE: NO LIQUEFACTION PREDICTED

ELEMENT THAT DOES NOT LIQUEFY UNDER THE MODELED CONDITIONS ─►

ELEMENT THAT LIQUEFIES UNDER THE MODELED CONDITIONS ──▼



#### APPENDIX VI

#### **DRAWINGS**







#### APPENDIX VII

#### REFERENCES



#### REFERENCES

ASTM D 854 "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer."

ASTM D 1586 "Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils."

ASTM D 1587 "Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes."

ASTM D 2573 "Standard Test Method for Field Vane Shear Test in Cohesive Soil."

ASTM D 4318 "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils."

ASTM D 4428 "Standard Test Methods for Crosshole Seismic Testing."

ASTM D 4767 "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils."

ASTM D 5084 "Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter."

ASTM D 6519 "Standard Practice for Sampling of Soil Using the Hydraulically Operated Stationary Piston Sampler."

Bowles, Joseph E. Foundation Analysis and Design. 4th ed. New York: Mc-Graw Hill, 1988. Print

Craig, R.F. Soil Mechanics. 5th ed. London: Chapman & Hall, 1992. Print

Dam Safety Rules. West Virginia Department of Environmental Protection, Water Resources.

Dynamic Modeling with QUAKE/W 2007, An Engineering Methodology. 3rd ed. Calgary: Geo-Slope International, 2008. Print

Forrester, Kevin. Subsurface Drainage for Slope Stabilization. Reston: American Society of Civil Engineers, 2001. Print

Hardin, Bobby O. and Michael E. Kalinski. "Estimating the Shear Modulus of Gravelly Soils," *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol. 131 No. 7, 867-875, 2005.

Hardin, Bobby O. and Vincent P. Drnevich. "Shear Modulus and Damping In Soils: Measurement and Parameter Effects," *Journal of the Soil Mechanics and Foundations Division*, ASCE, 98:SM6, 603-624, 1972.



Holtz, Robert D. and William D. Kovacs. *An Introduction to Geotechnical Engineering*. Englewood Cliffs: Prentice-Hall, 1981. Print

Idriss, I.M. and R.W. Boulanger. "Semi-empirical Procedures for Evaluating Liquefaction Potential During Earthquakes," *Proceedings of the 11th International Conference on Soil Dynamics and Earthquake Engineering and the 3rd International Conference on Earthquake Geotechnical Engineering*, University of California, Berkeley, 2004.

Kalinski, M.E. and M.S.R. Thummaluru. "A New Free-Free Resonant Column Device for Measurement of  $G_{max}$  and  $D_{min}$  at Higher Confining Stresses," *Geotechnical Testing Journal*, Vol. 28 No. 2, 180-187, 2005.

Lambe, T. William, and Robert V. Whitman. Soil Mechanics. New York: John Wiley & Sons, 1969. Print

ProShake Ground Response Analysis Program, Version 1.1 User's Manual. Redmond: EduPro Civil Systems, Inc., 1998. Print

Seepage Modeling with SEEP/W 2007, An Engineering Methodology. 4th ed. Calgary: Geo-Slope International, 2008. Print

Stability Modeling with SLOPE/W 2007, An Engineering Methodology. 4th ed. Calgary: Geo-Slope International, 2008. Print

Towhata, Ikuo. Geotechnical Earthquake Engineering. Berlin: Springer, 2008. Print

The Ohio State University Research Project # 60005876. "Evaluation of Liquefaction Potential of Impounded Fly Ash." Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 2005. Print

Vucetic, Mladen. "Effect of Soil Plasticity on Cyclic Response," *Journal of Geotechnical Engineering*, ASCE, 117(1), 89-107, 1991.

